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Commentationes Mathematicae Universitatis Carolinae
8,3 (1967)
CONSTRUCTION OF SPECIAL FUNCTORS AND ITS APPLICATIONS
Miroslav HUSEK, Praha

Let three categories 7(“ 7‘; , U4 and two faith=
ful functors F : K, — <€ be given., We want to con-
struct "the best functor" G from .7(; into 7(1 commuting
with F; and having given values at some objects X; € 09‘7(,'
"The best" for G means to have as many as possible gorod
properties (to be one-to-one, full, to preserve products, huo-
tients, etc.). It follows that if each object X of X can
be .embedded into a product of {X;#, then GX  must be em-
bedded into the product of {GX;j . This fact is the basic
idea for the construction of G . We shall prove under cer-
tain conditions that G is the only functor preserving pro-
ducts and substructures (Theorem 8) or that G is full when-
ever there is a full functor from X, into X, (Theorem 3
and its Corollary). In some cases G [X,] is a coreflecti-
ve subcategory of 7(,_ (Theorem 5) and G is the only full
functor from X, into X; (Theorem 9).

As applications of our general theory there are some il-
lustrative examples concerning relations between Top, Prox,
Unif. We shall obtain also new results in Examples 4 and 5 =
characterizations of continuity structures and a generaliza=-
tion of Smirnov theorem on the equivalence between compactifi-

cations and proximity spaces.
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We shall use the notation from [2] and from [4]. It seems
to be suitable to recall concepts being often used in the se-
quel (we shall deal with projective cases only - the dual
ones are inductive). In this paper, the term "functor" means
"covariant functor". A non-void indexed class {1“,- $ of
morphisms is said to be projective if all the f; have the
same domain. The following definition is a modification of
the projective generation from [4) (see [1]):

Let F: X —+ ¢ be a faithful functor, ¢, a sub-
category of ¥, {X;j an indexed class of objects from X
and let {¢;} Dbe a projective indexed class in % such
that {FX;{ = {€¢; § . We shall denote by

CF €)= fm o d 1K)

an object X of X  with the following properties:
there exists an f; : X — X for each © such

that F#; = ¢

if {q-‘.l is a projective indexed class in X, 9; °
:Y ~ X;, Fg; =g, * g for each <, where g € <, ,
then Fg = ¢ for some @: Y —> X -
In the case that {;§= {Fh,j, (Eh j= {X; 7, {h;} is
a projective indexed class, we shall denote X by <F, %, >-
- gﬂy {44 . The symbol <F, Y, Y-pef X’ , where X’
is a subcategory of x , designates the class
ELCF, €5 - Zm{hd | {h, 7 1 aprojective inde-
"xed class with ranges in X’ 3% .
Let us have two faithful functors F, ¢ X; — ¢ , &
functor G s <H,,F,) — K K,, Fp > (leee R oG =
s R ) 1s said to be projectively F, -preserving with
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respect to ¥, 1f GI[C<F,%,>-n {f i) <7, 4> - Lmi6h}
whenever the left side exists.
In most cases (see [4]) the generation does not depend on

¢, and therefore ¢; will be omitted in this case.

Now,we shall describe the main construction:

Let F; : X; — € be faithful functors, X, a
subcategory of X, and let G’ be a functor <X, For X%
L 4

__;(IFC",FZ' . Assume that the object

GX = <R, P [X,1)- fom <{F#IDf =X, €F 6 X 13, 167€43)
exists for each X € oj X, . Then the mapping G can be
extended to a functor G : < X4, F> — < X,, F, > in
this way: For each £ : X~ ¥, Y & X; there exists an
f-G,:GX —» G’Y such that R f, = Ff . It follows
that GX = (F;,F}EJG,J)-@ {f.1 and, hence, for
each € Hmﬂ;()(’, X > there is a morphiam G.A €

€ me‘mx’, GX) such that F, Gh = F . .

Definition. The functor G is said to be projective-

ly ( F, Fy > -generated by the functor G/ .
In the sequel, we shall use the notation from the preceding
construction and we shall suppose that F; are amnestic
(see [2]) - i.e. the conditions F;+« 1, £ is an e-
quivalence imply § = 1 (see also [1]).

The following two theorems deal with cases when G 1is
one~to-one (i.e. an embedding).
Theorem 1. If G is one-to-one then each X € oty X
'is @& maximal object having the given morphisms into X7 -
Consequently, if the projective generation exists in
(%,,F,),then X, = <F,o8 €5 pwgj %7 .
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Evidently, we must add some further assumptions for the
converse statement to be true:
Theorem 2. Suppose that F[Hem, (X,¥Y)]l= EIHM\%(GX, 6’y))

Y,
for each X€ X,, Y€ X;. Then G is an embedding if X =

'<F:n°0}"e>"Mx; ¢

Now, we approach to the more special case of an embedding
in our case - to the fullness of G . _

Theorem 3. The conditions E,EHM“Z(X,Y)J- F"me“(GX,G’Y}J
for each X e X,, Ye X, and 1’1=(F.,,F3EG’[?:JJ)°Mx;

( G__ET:J is the full subcategory of ¥, generated by
GLX,] .) are sufficient for G to be full. If G extends
G’ then they are also necessary.

Eroof. Let ¢ € H'mk, {GX, GX’> . By the first condi-
tion, there is a mapping { # — #}: Hom, (X, ¥) —-rHo»&,'(X,Y}
for each Y € X; such that £, ¢ g = f;, . By the second
condition, F,¢ = fF A for some h : X — X’ . Clearly,

Gh = & . The converse statement is obvious.

Corollary. G is full provided that there exists a full
functor H: <K, F)—~ (%a,Fz' ) which extends G’ and that
K, s LR R IX,1)~ Mo X .

Theorem 4. 6 1is full provided that ¥,= <F,, oy € ~

-twop K and that there exists a projectively (f;, E,[]{;J}-

preserving functor H: <1(;,F; y = (X, E,') with the pro-

perty Hoe G’ = 'I,;; .

Broof. It is sufficient to prove the equality He G =1, .

By the definition GX= < F, FIX,1)-Ymif If: XY, Ve x;;’.

Thus HGX= <Fy, F, [, ] >-£-»_»{Hf‘,lf.- XY, Ye X, -

Secause EH#G, = ¢, F Hf‘, = Ff we have -HG6X =

s<R,FRLX )~ {@_p_‘{‘flfx XY, YeX;31=X.
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Now, we shall turn our attention to other Properties of
G =~ to the preservation of generations,

Thegren 5. Let F, [Homy, ¢(X,¥>I= F [Homg, <GX, @y>]
for each X € X, , Y € %) , Then the functor G X, —¥ X3
where x; is the full subcategory of :X’, generated by
<R €Y= a4 G'L X1 is mductivel}’(ﬁi,f>—
preservinge.

Proof. Assume that X« <5,f)-ﬂn{¢43,%’azﬁ-’/‘ ’
AeX;, Rg,=pof ;. We are to prove the existence of a
morphism g.:GX — A “such that F, ¢ = ¢ . First, sup-
pose that A= G’Y, Then @; = A, e,  for some Hy :.

:Df;— Y and, consequently, ¢ = F, A for some hs X
= Y. It follows that the requested @ 1is equal to h‘, .
Let A= (f-;,‘f)-‘&__o"_n {fk,f, where Ede; € G'L¥;J1.
Then, by the preceding proof, there exist morphism " 1 G X
"E‘kﬁ such that R4 = F &, » ¢ . It follows from
the definition of A that g = &  for some g : GXr A,

Of course, it is possible to state Theorem 5 more gene-
rally for ‘¢, instead of % . But in that case we must
add a condition ensuring that ', is stable under composi=
tions with morphisms into G‘L X} .

Theorem 6. Let ¥y =< F, €Y - qwoi X, . Ir
X=<F, €y~ m{fs, €4 ¢ X implies GX =
« (h,€¢ > (&_m_» {f:, 3 then G is projectively Ff -
preserving with respect to ¢/, If G exterds G’ then

the convers holds, too.

The last theorems deal with relations between G and
other functors Hs (W ,R> = <(¥X,, F, > . We shall denote
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H < 6 ir HX <& GX for each X € X, (1.e.
if there is an 3 HX —»GX such that F f = 1 )y
e.g. we have always G-x4 < G’

Theorem 7. Let %, be a subcategory of ¥, such that
¥, c 7(-' and that H%<X Y= Hm (X ¥ > for each
X e ’%1 y Y € K, ., Assume that Hx, < G’ for a func-

tor H: (ﬁ,, 1;)—7«7‘; « Then H < Gg‘,.

Corollary. G  extends G' if and only if G’ oan

be extended to the full subcategory of ¥, generated by ¥
with preservation of the equality F o G’ = F -

Theoren 8. Suppose that 36, , H fulfil the conditions

of Theorem 7. If moreover H,q = G , H is projectively

(F,00i € > =-preserving, §1c<5,o(i € - mop X, ,
then H = Gf.,

Thegrem 9. Let :lcf(q,oajf)-fw; 6'LX,1. 12 H

is a full functor from (¥, , R > — <X,,F >

which extends
G’ then H = 6 ,
Broof. It follows from the fullness of H  that if

g:HX— G’Y then Ff = fg for some f: X— Y .
Consequently, G X <F,, HX . Hence" G=H

Now, we shall proceed to the applications of the prece-
ding general theorems to special ¢ategories. The first ones
are only illustrative. The main applications occuring in ex-
amples 4 am‘5 are presented here wifhont details (they will
appear elsewhere).

Exagple 1. Let ¥, be the category of semi-uniformiz-

able spaces (i.e. X & & (ag) implies 44 € « (X)), 11
“be—the category of proximity spaces (in the sense of 2] {.e.
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they need not be uniformizable).
The functors F; are the obvious forgetful functors in=-
to Ems. »
We choose far JC,’, the least space projectively genera-
ting X, .
It is the three-point space < (a, 44, ¢), « ) , where
w@)=(@,4), wle)ele, ) , w(&)=ca,b;c), It we
want for G to be full we must put G'<(a, & e ), u )=
=<{¢(a, &, ¢); o ), where the only non-void non-proximal
sets are (@), (e¢) . By Theorem 9, G is the only full
embedding of ¢( ¥, , F; » into ¢ K, ,f > (it is the known
embedding onto fine proximities). G [ X ] is coreflec~
tive in X, by Thearem 5 and is not reflective.
From the inductivity of GLX,] in X, the uniqueness of
G  follows also in another way. We know that X, is in-
duétively generated by paracompact T, -gpaces with at most
one accumulation point. It follows from Theorem 7 that evéry
full functor from ( ¥,, F; > into (X, F, > coincides
with G on discrete spaces énd, consequently, on the pare—
compact 1; -gpaces with at most one accumulation point. If
we construct the full embedding from these facts inductively
we obtain G (without using Theorem 9) .
Example 2« The second method from the preceding example
(a comparison of the functors generated -proJectiycly or in-
ductively) is useful in the cases when ¥ # moi G [¥7J] .
.The last inequality holds if we replace the proximity spaces
‘by the semi-uniform spaces in Example l. We shall prov¢ that
there is a class of different full embeddings o ¢ %;,!F;, >
into (W, F; > in this case. Let am be an infinite
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cardinal number, Am. a discrete space of cardinality »m,
Pon=Am % <@, ;e ), >, Gy P the fine semi-uni-
form space inducing e,,, , and G’,,, be the functor projec-
tively < F, F; > -generated by G, *

Then G, # G,, for m % m .

If we use also the inductive generation we shall get that the
value HP  of an arbitrary full functor H: X, —+ X, is
uniformly coarser than the fine semi-uniformnity and is uni-
formly finer than the fine proximally coarse semi-uniformity
of P .

The same results can be proved for uniformizable and uniform

spaces (we use the closed unit interval instead of

{Ca, & c)yn ) .
Exarple 3. Let X, = Undf , be the category

of uniformizable proximities, F; the forgetful functors in-
to Ens ) 'x,' the full subcategory of UC; generated by
metrizable spaces and (G’ be the obvious isomorphism of
X, onto K . Then the functor G projectively
{F, F, > =-generated by G’ is the forgetful functor (the
left adjoint of the embedding x,’ onto tetally bounded uni-
form spaces).
As a consequence of Theorem 5 for the restriction of G to
the proximally fine uniformities we shall get the coreflecti-
vity in X;  of the proximities having proximally fine uni-
formity (this result (see also [7]) can be more easily proved
directly or as a consequence of Theorem 6 in [4]).

Example 4. Now, we describe a method which serves to

characterizations of continuity structures. (A similar method
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was used by H. Kowalsky in (6] to a characterization of the
category of topological T, -spaces.)
E.G. /we want to f£ind conditions for a category X to be
equivalent to Top. First, there must exist a faithful func-
tor F from ¥ into Ems and an object D of X
such that FJ is a two-point set and

K =<KF,Ens >-moj (D), Now it is sufficient to con-
struct the functor G projectively ¢ F, Frop > =—gecnera-
ted by @’ ( G’ assigns to D a connected T, -topolo-
gr on FD ) and to find conditions under which G is
full and onto a representative subcategory of Top. Using
Theorem 3 we shall get the following proposition:

A category X 1is equivalent with Top if and only if
there exists an object D in X such that:

1) me(P,D > =(, 3,1, ), where axef=a,Becx=/3.

2) It h; € Hom (X, Y, h, # h, then there is an
4 GHW}‘<D,X) with the properties feax = foe B = F,
hyotsh by, o f (let us denote by €, <D,X ) the set
E{¢ | e Hm <(D,X>, fif=Ffoe B = £3) .

3) Assume we have given mappings v :Hom, <X,D >+ Hom, <%, D),
q:cx<1>,>’)—rc,‘<p,x > such that fegph =y feo b far
each 4, . Then ¢ = {h — @g+Ah} for some g: Y— X,

4) Let ¢ be & mapping ¢, <D, X > — (a,R)
which can be described by means of a family {q;: l11¢l1,3€5,
Jy are ﬁnite}'fron Hom, <X,D) 1in this way: ¢g = &
if and only if q; *g = & for some % € I and each
3 6% .Then ge{g —hegl forsome At X—D.

5) Le¢ S be a set and ¢ be a subset of
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Homv, < S,(x, 8)) satistying the condition (4) with S

and ¢  instead of ¢, <P, X > amd Homy, <X, D>. Then
there is an X € ofy X and & bijective mapping ¢ ¢

1+ 8=ye,<D, X such that the mapping {f—w{x—> foepxi}:
s Homy, <X,D>—+¢ 1s bijective, too.

One obtains similar propositions for closure and proxi-
mity spaces using three~point space. It is also possible to
glve externél characterizations as the greatest categories
having certaiﬁ prope‘rties etc. A cha'racterization of the ca-
tegory of topological spaces by means of a two-point space
was recently found al$o by D. Schlomiuk (see [8]), but I do
not know any further details of that characterization.

Example 5. Let ¥, be the category of those proximi-
ty spaces satisfying the implication X n Y Xn ¥V,
and F; Dbe the forgetful functor of ¥, into Top. Let ¥,
be the category of compactifications of topological spaces,
i.e. the following category:
objects of ¥, are triples (P, +#, 8 > where P is a
topological space and ¥ js a hoﬁomorg,h;].sm of P onto a
dense subspace of the compact topological space & ,
morphisms of ¥, are triples (¢,{P,4,8)>,< P’ £/, 6>,
where ¢ 1s a continuous mapping P into P’ such that
there 1s a continuous mapping q': q— @ making the obvi-
ous diagram commtative (¢p’s £ = ¢ ¢p ) . Denote by R
the faithful functor {< &, <P, %, @%,<P, ¢, @>) —
-—&‘(éj,‘?, P’)j t ¥, — Top .

The Smirnov theorem, concerning the equivalence bet<
ween the uniformizable proximities and the uniférmizable com-
pactifications, is bf the following form ( X means the
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category of uniformizable proximities):

There exists a unique full embedding G : <%, F;*.‘J —

— <¥K,,FR> such that G L X1 1is a representati-
ve subcategory of uniformizable compactifications. (The proof
follows also from our Theorem if we take the closed unit in-
terval for ¥/ o)

It suggests generalizations of Smirnov theorem for other pro-
ximity spaces and other categories QC; . We shall mention
here only one such a generalization. The details and other
generalizations will appear elsewhere.

Let ¥, = €E{<P,, D] P is a set }, where n, is
the only proximity from 9(} inducing the coarsest 1; -
topology 44, on P (41-' is the Wallman proximity of u} )
and G’ be the functor {P—4<P,1,, P>} . Then the
functor G projectively { F,, Fi; ) =-generated by G’ is
a full embedding of (¥,, F; > into (¥, , ;). Each Peoly ¥,
is a dense subspace of the third member of GP  with the
Wallman proximity. G L¥,] 1is coreflective in ¢ F,, Top)=
proj GL¥;] (this last class is a trivial projective ex—
tension of G [ ¥, ] ~-compact spaces in the sense of [3])

and, hence, GP has obvious extension properties for each

P .

The advantage of this method is in the fact that we
shall get functor (i.e. continuous extensions of some map-
pings), which is impossible in some similar embeddings con-
cerning only spaces and not mappings (e.g. in [5]).
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