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A NOTE ON THE CONTINUITY PROPERTIES OF NONLINEAR OPERATORS
Josef KOLOM{, Praha

l. Introduction. M.M. Vajnberg [1l] has proved that eve=-
ry strongly continuous mapping defined on a closed ball
I{ (Ix Il € R) of a reflexive Banach space X into X
is completely compact (i.e., compact and uniformly conti-
nuous). Some necessary and sufficient conditions for the .
strong continuity of F have been proposed by E.S. Citlanad-
ze [2) and E.H. Rothe [3]. These results have been extended
and generalized for instance, by M.M. Vajnberg [1,§ 71, (4],
and M.I, Kadec [5). T. Kato [6) has shown that every hemi-~
continuous locally bounded monotone operator F from Banach
space X to its dual X* is always demicontinous. This
result was generalized for vaguely continuous mapping by Fe.
E. Browder [ 7). A two-way connection between the range and
demicontinuity of nonlinear operators has been established
by WeV. Petryshyn [8,th.2,corr.5),cf.also [9,ths5,61 . Some
properties of vaguely continuous operators were also discus=- -
sed in [10].

The purpose of this note is to give some conditions
for the strong and weak continuity of nonlinear operators
and to derive some basic properties of weak continuous ope=-

rators acting in Banach spaces (or in linear normed spaces).
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2, Notatiops and definitions. Let X, Y be Banach spa-
ces (or linear normed spaces), X* , Y* their adjoint(dual)
spaces as the set of all bounded conjugate-linear functio-
nals on X, Y , respectivel y. The pairing between e* e X*
or Y*) and x € X is denoted by (x , %), We shall
use the symbols " —s ", " ¥, " {0 denote the
strong convergence in X, ¥ (or in X*, Y* , or in the
set of real numbers) and weak convergence in X, Y (or in
X*, Y* ), respectively.

Let F be a mapping with domain D= D(F) c X
and values in Y . Then:
(1) F 1is séid to be strongly continuous if xnlr-o X in
D implies F(x,)-— F(X) .

(2) F 1is said to be weakly continuous if .x”—"-’-) X
in D implies F (X, ) ¥ F(Xx) .

(3) F 1is said to be demicontinuous [11] if X, — X in
D implies F (X, ) 2,5 F(x),.

(4) F is said to be uniformly demicontinuous on D if for
any given constant €& > 0 and e* e Y* there
exists a positive number % such that for every Xy

x, € D with | X, - .X’_ﬂ < o there is
I(F(x,)- F(x,), e*)l < € .

(5) F is said to be vaguely continuous [10, 7] #f X € D,

vy e X and X+tv ed for 0< t < ¢,
~for some 'to >0 imply that there exists a sequen-
ce {t,} with t, > 0 farall n, t, — 0
whenever M —»+ 0o  such that F(Xx+ {o )2 F(x),

(6) F 1is said to be compact (weakly compact) on D if for
every bounded subset M ¢ D , F(M) is compact
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(weakly compact) in Y .

(7) F is said to be completely demicompact on a bounded
set M c D  if for any couples (X, , X ),
X, , X, €M with o, -xg K—> 0 8 m-~
—$ 00 there exist the subsequences (‘X;‘b s 'x’::‘»)
such that F(ot,',,k)-w;) Y, , F(,x;’th)ﬂ—) Yo
and 1, € Y .

(8) F 1is said to be locally weakly sequentially bounded
if x, e D, x e D, x, 5 x imply that
{F(x, )} 1is bounded in Y.

(9) F is said to be weakly closed inDR={.xéKs Ixis R}
if xn-'“—’-y X in DR and F(x, ) Xy gy imply
F(x) = a4 .

Now suppose that F is a mapping with domain D(F)=Dc
¢X and values in X* .
Then:

(10) F is said to be monotone [11, 12] if Re (F ()~ F (@),
w-v)20 forall «,veD.

(11) F 1is said to be D-maximal monotone if for 4, € D,
w;, € X* the inequality Re (ug - F(et) e -4) 2 0
for all w e D implies that w5 = F(u,) .

(12) D is said to be quasi-dense [6] if for each « € D
there exists a dense subset M, of X such that for

each » e M, , u+tved for sufficiently
small t > 0 .

3. Recall that there is known only one theorem [1, th.
711 ,[ 5] giving necessary and sufficient condition for

the strong continuity of non-potential and non-smooth
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operators., Now we prove

- Theorem l. Suppose that X, ¥ are linear normed spa-
ces. Let one of the following conditions be fulfilled:

a) F: D — Y  is compact and weakly clesed ope-
rator on D, s Where DR={.xeX:l.x#éR}cX.

b) F: D—X* (D c X) is D-maximal monoto-
ne and compact on D .

¢) F: D — X* is monotone, vaguely continuous
and compact on D , where D is quasi-dense in X .

Then F is strongly continuous in DR’ D respec~
tively.

Proof. a) Suppose that X,, X, € Dy , Xy M X, .
Since F(I)R ) is compact, there exists a subsequence
such that F(x,,_~) -~ 4, y e Y . Hence
Fx,, ) M, a4 . Since x,‘u—“ﬁ-} X, and F is
weakly closed, F (X, ) = 4, . We shall prove that
F(Xy) -, F (X, ). Suppose, on the contrary, there

exist ¢, > 0, 6,* € Y* and an increasing sequen=-
ce rn.,,, ’"‘zr of integers such that

*
(1) J(F(x, )= F(x,), €)1 2 € .

Since {F (X, )} € F(Dy) , there exists a subse-
quence .x,,‘éh such that F('x""a';., ) — x . Hence

F (Xnj, ) M, x . Because ““éu—!r_—’ X, and F is
weakly closed in D , F(x,) = x . Hence

o

F('x"‘ia.,) X4 F(x,), which contradicts (1). But { F(x, )3}e
€ F(D,) and F(Dp ) 1is compact. Since weak conver=
gence 1is equivalent to the strong one on compact set, we
have that F(Xx, ) — F (x,) . b) Let { X, } be

a sequence in D with .x,b-‘z-s X,, X, € D . Then
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Ix,h£¢c, ¢ >0 and { F (X, )} is compacte.
We have to show that F (X, ) —» F(Xx,) . Suppose that
{F("‘w” does not converge to F(x, )e Then there exists
a subsequence { Xug ¢ such that F(x, ) —~4> F(x,).
Passing to a subsequence F (X,‘,h’, ), we have that

F (.x‘»‘.t ) —>ny, . Let u be any element of D , Then

F (X, ) F(a)~ %~ F(u) and Re (F(Xu, )~ Fl),
"‘M.,‘“') =0 by the monotonicity. Since “wa.,"_’ X, ,
Re (ap, ~F(a), X,=At )& 0  for every « € D . Since
F is D-maximal monotone, M, = F (X, ) , which is a
contradiction. Hence F (X, ) —> F (X, ). The assertion
¢) is a corollary of Browder s theorem [ 7) and b). This con-
cludes the proof, :

Corollary l. Suppose that X is a reflexive Banach

space, Y a linear normal space. Let one of the following

conditions be fulfilled:

a) F: Dg — Y is compact and weakly closed
operator on D, ¢ X .
) F: Dp— X¥, (D3 c X) is Dg =-maxi-

nal monotone and compact on Dg .

Then :F is completely compact and hence uniformly con=-
tinuous on Dy .

Theorem 2. Suppose that X, ¥ are linear normed spa-
tese Let one of the following conditions be fulfilled:

a) F DR —> ¥  is weakly compact and weakly clo-
sedon Dy ¢ X .

b) F: Dg— X* Dy c X (or F: Dy— Y, whe-
re Y is a reflexive Banach space) is locally weakly se=

quentially bounded and weakly closed on D“
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Then F is weakly continuous on Dy -

Theorem 3, Let X be a reflexive Banach space, Y a
linear normed space, F : Dg — Y a weakly continuous
mapping of a closed ball D, (I Xx Il § R) c X into

Y . Then F is uniformly demicontinuous, weakly compact and
bounded on Do -

Proof. Suppose the contrary; then there exist g, > 0,
z:‘ e Y* with the following property: for every m

=4, 2,...) there exist X x” ¢ D such that
(m=1,12, m 1 Yn R
I Xp = Xl < % and | (F(x,)-F(xy ),Z})12 €, .

Since DR is weakly compact, there exists a subsequence

p ’ ¢ g -

{x,‘*‘} such that Xng —F X, - Because D, is weakly
closed, X, € Do . As m — o0 x;-.x,:—"z-) 0 . Pas-
sing to a subsequence { .x;',,b t we have that .x:b—'z-} X, -

Since F is weakly continuous on D, F(x,",b)_“-’-'-) F(x,),
F(\xlh ) 5 F(X,) . Let z* be any element of Y*

Ther

WF(xn, V= F (xp, ),2%) & I(F (x5, )= F(x,), x5+

+ 1 (F(x,) = Flx, ), 29 .

Hence l(F(x:.,*)-fF(x:b),x*)l_—* 0  wheneverm — oo,
which is a contradiction. Thus F is uniformly demicontinuous
on Dp . Let { X, 1 be any sequence of Dy . Since Dy

is weakly compact, there exists a subsequence o<.,,,* such
that "“"AL X, and %, € D, . Since P is weakly
continuous, F(x, ) M, F(x,). Therefore F is weakly
compact on D‘ and hence F 1is weakly bounded on Dy -

But weak boundedness is equivalent to boundedness. This com~
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pletes the proéf.

Remgrk l. If F is a compact closed mapping of a clo~
sed ball D; c X into Y , where X, ¥ are linear nor-
med spaces, then F is continuous on D . Recall that a
continuous mapping defined on DR c X is not uniformly
continuous on DR in general even if we impose on F +the -
condition of boundedness. Let us remark that Theorem 3 is var
1id if we replace Dp by an arb;Ltrary convex closed boun-
ded set M e X .

Corollary 2. Suppose that X is a reflexive Banach spa-
ce, Y a linear normed space. Assume that one of the follo-

wing two conditions is satisfied:

a) F : R —Y is weakly compact and weakly
closed on D, c X .
b) F: Dg—»X* D c X (or F: Dg — Y, whe-

re Y is a reflexive Banach space) is locally weakly sequen-
tially bounded and weakly closed on D -

Then F is uniformly demicontinuous‘, weakly compact and
bounded on Dg - '

Theorem 4. Let X, Y be linear normed spaces, F a
mapping of X into Y . Then F 1s completely demicompact
on a bounded subset M < X if and only if F is uniform-
ly demicontinuous and weakly compact on M ,

Proof. (The proof is similar to that of M.M. Vajnberg'a
theorem [1,chap.l).) Suppose that F is completely demicom=-
pact on M . Teking (Xp, Xp), X, € M | there exists
a subsequence { Koy ¥ such that {F (Xmp )} weakly
converges in Y . Hence F 1is weakly compact. Suppose that
F is not uniformly demicontinuous on M . Then there gxist
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e >0, z*e Y* with the following property: for
(] .

every m (m =1,2,...) there exist X, , X € M

such that I, - x4 I < % and I(F (XL )~ F(x%),

2¥ )| 2 €, . But this is a contradiction. Conversely,
assume that F is weakly compact and uniformly demiconti-
nuous on M . Let (x,:b ’ .x; ) be any sequence of couples
of M such that X, - X, |l —0 a8 m — oo . From weak
compactness of F 1t follows the existence of the subsequen-
ce ( XL

4
Assume 4, # 14, and set Moy, -y, I = 2€ . According

, X4, ) such that F(x, ¥y, F(xl ¥ qy, .

to Hahn-Banach theorem there exists zXF e Y* llz¥ I = 1
such that | (g, -1, 2*)| = lag, -y, I= 2 ¢ . Hence the-
re exists a subsequence ("S'n* , .x,::b ) such that .x,',,,_h -
—x:”u—’o as Ak —» oo and I(F(xm )~ F(xy, ),
¥l 2 ¢ (% =1,2,...). But this contradicts the uni-
form demicontinuity of F . This completes the proof.

Corollary 3. Let X be a reflexive Banach space, ¥ a
linear normed space, F : Dp — ¥ a weakly continuous
mapping of a closed ball D (I x 0 &€ R) c¢ X into
Y . Then F is completely demicompact on Dy -

Remark 2. If either a) or b) of Corollary 2 is satis-

fied, then F is completely demicompact on Dg -

Suppose that X 1is a reflexive separable Banach space.
M.I. Kadec has shown that we can introduce an equivalent norm
in X wunder which X is strictly normed. Assume that X is
provided by this norm. Let G be a closed linear subspace
of X . Define the operator P of metric projection on G

by .
le—Po(ﬂ=”rTgnlx-q.ll.
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Since X 1is reflexive and strictly normed (and hence strict-
ly convex), P exists and is single-valued. An element
X € X is called orthogonal to G if Px = 0 . Accor-
ding to [5], taking a complete line&ly i}ldependent sys—
tem of the elements ef , e} ,.., ¢¥,... of X* , we
form a decreasing sequence of subspaces X> X, 2 X, o... ,
where X, ={Xx € X : e,’: (X)= 0, H=1,2,...,m3.
Denote by X™ the set of all elements of X orthogonal to
Xp o For egery X e X there is & unique decomposition
xX= P"x + P .x , where P™, PB_ are operators of met-
ric projections on X™, X, respectively. '
Theorem 5. Let X be a separable reflexive Banach
space, F a demicontinuous mapping of X into X . Then
F is weakly continuous on a closed ball Dy (x | € R) c X
if and only if for any given € > 0 and €*e Y* there
exists an integer m, (€, €™) such that for every m 2 m,

and % € Dy there is

(2) | (F(P™x) - F(x),e*)l < & -

Proof. Suppose F is weakly continuous on D; and (2)
does not hold. Then there exist ¢, > 0, € € X* and
the subsequence Xn, € D, xm“_"‘.';, X, , Xo € Dg
such that

(3) | CRP™ %, )= F(x, ), e¥)l 2 €, -

According to [5,lemma 21, P““f.x,,* X X, . Hence
F( P“‘“-x”“) 2y F(x,) and (3) contradicts the weak
continuity of F . Conversely, assume that &, € Zl),~ ) X €
€ DR y % ~, X, . Let € > 0 ©be any positive num-

ber, €* € Y* and suppose that there exists an integer
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N (€, €*) such that for everym & m, , x € Dy
chere is
[CF(P™x)- F(x),2*)<E .

Then
[CF(x,,)- F(x,),€*) | € I(F(x,)-F(P™x, ) e*)l +

FLF(P™Xm ) = F(P™x, ), €| + [ (F(P™x,)~ F(x,),€*)l<
<& FIFP™x, )~ F(P™x,), %)l

for every m , m & m, . According to [5] P™X,,, —

— P™x, a8 m —» o0 . Since F is demicontinuous,
FOP™ )Yy F(P™x ).Thus F (Xm) 2 F(x,) and
this concludes the proof.

Theoren 6. Let X be a reflexive Banach space, Y
a linear normed space, F a weakly continuous mapping of a
convex closed bounded subset M < X into Y . Then
there exists x, € M such that FF (X, ) =
- x:’mﬁf' hFx)N .

Proof. According to Theorem 3 F is bounded on M ,
Set d = .xmf hF(xH)h . Then there exists a sequen—
oo {X,3 € M suchthat  Lm I F(x,)l=d . sto-
ce { X,, § 1is bounded, there exists a subsequence { Xn, 3

o *

such that xnhl’_) X, ., Then X, 6 M and Flxn, )2y

M, F(X,) by weak continuity of F . Hence |l Flx )l &
6&%]&7(%)'-“% VF(x,, = cd . onthe

other hand & & | F(x,)ll . Hence ol = Il F (x,)) and
this completes the proof.
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Remark 3. Some of these theorems will be applied in
forthcoming paper which deals with the weak differentiabi-
lity of mappings in functional spaces.
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