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Commentationes Mathematicae Univeraitatis Carolinae 
8,3 (1967) 

A NOTĚ ON THE CONTINUTTÍ PROPITIES OF NONLINEAR OPERATORS 
Josef KOLOMÍ, Praha 

!• Iatroduction. M.M. Vajnberg [13 has proved that eve-
ry strongly continuous mapping defined on a closed balí 
I W II * M £ R ) of m reflexive Banach space X into X 

is completely compact (i.e., compact and uniformly conti­

nuous). Some necessary and sufficient conditions for the . 

strong continuity of P háve been proposed by E.S. Citlanmd-

ze [23 and S.H. Rothe l33.These results háve been extended 

and generalized for instance, by M.M. Vajnberg II,§ 7J,í4j, 

and M.I. Kadec [5J. T. Kato [6̂ 3 has shovm that every hemi-

continuous locally bounded monotone operátor P from Banach 

space X to its duál X* is always demicontinous. This 

result was generalized for vaguely continuous mapping by P. 

E. Browder [ 73 • A two-way connection between the range and 

demicontinuity of nonlinear operátora has been established 

by W.V. Petryshyn [8,th.2,corr.53,cf.also £9,th.5,6J . Some 

properties of vaguely continuous operátora were also discus-

sed in [lOj. 

The purpose of this notě is to give some conditions 
for the strong and weak continuity of nonlinear operátora 
and to derive some basic properties of weak continuous ope-
rators acting in Banach spaces (or in linear normed spaces). 
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2. Notatlona and deflnltiona. Let X, X be Banach spa­
ces (oř linear normed spaces), X* f X* their adjoint(dual) 
spaces as the set of all bounded conjugate-linear functio-
nals on X, X , respectively. The pairing between €*e X* 
(or X* ) and x c X is denoted by ( x , e * ) . We shall 
use the symbols w * M, " ^ •> *i to denote the 
strong convergence in X, X (oř in X* , X* , or in the 
set of reál numbers) and weeik convergence in X, X (or in 
X*, X* ), respectively. 

Let F be a mapping with domain J> » J) ( F) c X 

and values in X • Then: 
(1) F is said to be strongly continuous if X -^V x in 

D implies F (x^ ) -* FíiX) . 

(2) F is said to be weakly continuous if *x̂ £̂!l> x 

in B implies F C X^ ) -**£-» F dX > . 

(3) F is said to be demicontinuous £llj if x. • x in 

D implies F(X„,)3£-+ F(x). 

(4) F i s said to be uniformly demicontinuous ón D if for 

sny given constant fe. > 0 and e * € Y * there 

ex i s t s a positive number cT such that for every *x̂  7 

Xt e D with II x^ - X% I < ď there i s 
\(F(XiY- F ť ^ ) , e * > l < e . 

(5) F is said to be vaguely continuous [10, 7J áf •* € D 
or € X and # + t v e J> for 0 < t < t0 

for some t0 > Q imply that there exists a sequen-
c e i tn 1 w i t h '**. > ^ f or a l l n , t ^ —• 0 
whenever ort —» + oo such that F (X+- i^r ) <Mr> FC*X), 

(6) F i s said to be compact (weakly compact) on D if for 
every bounded subset M c 5 ; F í M ) is compact 
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(weakly compact) in Y • 

(7) F i s said t o be completely demicorapact on a bounded 

s e t M c J> i f for any couples C x ^ , . x ^ ) , 

^1 , X * e M with KiX' - X * I—-* 0 as /rt-» 
<H, 7 *?t Tle *1» 

—f 00 there ex i s t the subsequences (o**^, 9 *x^ ) 

such that P ř o c ^ ) •*£> ^ , F r * ~ * > - * C * V * 

and 4^ tf y • 
(8) F i s said to be l o c a l l y weakly sequent ia l ly bounded 

i f •**, 6 to, * e & >'**, ^~* * imply that 

i F (X^ ) ? i s bounded in X . 

(9) F i s said to be weakly closed i n D ^ s r ^ X é X : ÍX I £ R*} 

i f x^JBC* X in J)R and F Cx^ ) ^ £ * ^ imply 

F f x ) s- /t^ • 

Now suppose that F i s a mapping with domain DCF) = D c 

cX a n d values in X * • 

Then: 

(10) F i s said to be monotone [ 1 1 , 12] i f Re (F (M>) ~ F(v), 

4A,->v) ž 0 for a l l /U, tr €'J) . 

(11) F i s said to be D-maximal monotone i f for AA*0 e D , 

<U% e X* the inequal i ty Re fttg - Ffr* > , 4 t „ - 4 * } £ 0 

for a l l JUL £ D implies that iť£ * F f - i t ) . 

(12) D i s said to be quasi-dense C 6 J i f for each u, € J) 

there e x i s t s a dense subset M^ of X such that for 

each 1/* e M t t > >a 4 -1 v e J> for s u f f i c i e n t l y 

small t > 0 m 

3» Recall that there i s known only one theořem £ 1 , th« 

7 .1J , £ 50 giving necessary and s u f f i c i e n t condit ion for 

the strong cont inuity of non-potential and non-smooth 
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operátora* Now we prove 

Theořem 1, Suppose that X, X are l inear normed spa-

c e s . Let one of the fol lowing conditions be f u l f i l l e d : 

a) F ' PR —* y i s compact and weakly clos ed ope­

rátor on DR , where PR s {»X 6 A J i x /I £ R } c A . 

b) F : D • X * C D c A ) i s D-maximal monoto-

ne and compact on D • 

c) F : D — y X* i s monotone, vaguěly continuous 

and compact on D , where D i s quasi-dense in X . 

Then P i s s trongly continuous in 2)», 2) respec-

t i ve ly* 

Proof« a) Suppose that ^ , x„, € DR , X„, 2£-* X0 . 

Since í*CDR ) i s compact, there e x i s t s a subsequence 

such that F C x ^ ^ ) —t /y^ 7 y.0 e Y . Hence 

FCiX^^ ) - ^ 4fc . Since x -2L+ xo and F i s 

weakly c losed , F ( Xp ) » nf0 . We sha l l prove that 

F C x ^ ) ^ > F f«X0 ) . Suppose, on the contrary, there 

ex i s t e , > 07 &* a Y * and an increasing sequen-

ce rn,*, <n±1 *** of integers such that 

(1) I ( F f * ^ ) - F C x 0 ) , < ) l š e c , 

Since -f F Č X ^ ) } e F CJ)R ) , there e x i s t s a subse­

quence x*^ such that F (*.„,. ) — v SC . Hence 

F í ^ . ) - ^ X . B e c a u s e x,*,. - i £ - * , x , and F i s 

weakly closed in 3>R , F (0<o ) s X . Hence 

FC* ) - ^ F < * 0 ) , w h i c n contradicts ( l ) . B u t { F f x ^ ) } € 

č F ( P- ) and F(D^ ) i s compact, Since v/eak conver-

gence i s equlvalent to the strong one on compact s e t , we 

háve that F(x^) > F ( » X 0 ) . b) Let { x ^ \ be 

a sequence in D with x*. -2^y x X e D . Then 
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I X ^ I é C , C > O and { F (*„, > J i s compact. 

We háve t o show that F C x ^ ) — ^ F ( * 0 ) . Suppose that 

{FC&^l <*oe8 not converge to F(x t f ) • Then there e x i s t s 

a subsequence { ^n,^ i s u c J l * n a * ^ ^ ^ j . ' / " ^ F C ^ 0 ) . 

Passing t o a subsequence F ^x*mu . ) ; we háve that 

F (iX^, ) —> ^ . Let u be any element of D • Then 

F(x„.,)-F (**,)-+ «h,~F(*L) and R e C F ť V x ^ J - F O * ) , 

>^ ,-AA,) & 0 by tne monotonicity. Since X ^ — * x* ? 

Re (fi+0 - F(AťJ, X0-<*A' ) á 0 for every AJL € D • Since 

F i s D-maocimal monotone, / ^ » F Č«X0 ) which i s a 

contradict ion. Hence F (**%,} — * F(x0 ) • The asser t ion 

c) i s a corol lary of Browder 's theorem [ 7J and b) . This con-

cludes the proof• 

Corollary 1« Suppose that X i s a re f l ex ive Banach 

space, X a l inear normál space. Let one of the fo l lcwing 

conditions be f u l f i l l e d : 

aO F ; DR —* Y i s compact and weakly closed 

operátor on ])R c X . 

b) F : DR —» X * , (3R c X ) Is DR -maxi-

nal monotone and compact on DR • 

Then F i s completely compact and hence uniformly con-

tinuous on BR • 

Theorem 2« Suppose that Xf Y are l inear normed spa-

5es. Let one of the fol lowing condit ions be f u l f i l l e d : 

a) F : DR —* y i s weakly compact and weakly c l o ­

sed on DR c X • 

b) F : DR - » X * , PR c X (oř F ; J>R -> Y 7 whe-

re X i s a re f l ex ive Banach space) i s l o c a l l y weakly se-? 

quent ia l ly bounded and weakly closed on D • 
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Then F i s weakly continuoua on DR • 

The ořem 1* Let X be a r e f l e x i v a Banach space, X a 

l inear normed space, F ; PR —* y a weakly continuoua 

mapping of a d o s e d bal í DR C II x II £ R ) c A into 

X • Then F i s uniformly demicontinuous, weakly compact and 

bounded on DR • 

Proof • Suppose the contrary; then there e x i s t B0 > 0 } 

X * 6 V * with the fol lowing property: for every /rt 

(/n. = 4, 2,...) there e x i s t x^ 7 x£ c J)R such that 

I < - < | < £ and I C F f * ; > - F f c C ) , < H á e . . 

Since DR i s weakly compact, there e x i s t s a subsequence 

'{** , $ s u c h t h a t **.*. - ^ - t X . . Be cause De i s weakly 
Jk> **. * 

c losed, x0 e ]>R . As /rt —* x̂> .x^- A ^ 2áL+ Q m p a s -

s ing to a subsequence { tX^ ř we háve that j< -2£* ,x . 

Since F i s weakly continuoua on D^; Ffac' ).££-• F f . X a ) , . 

F <*x" ) - 3 ^ F Cx 0 ) . Let z * be any element of X* . 

Ther 

W R < ^ ) - F(*l^ ),z*)\á KFCx^y-FC*.),**)!* 

+ \(F(xě)~ F(*^h z>*>\ • 

Hence I C F í * ^ ) - Ff^í K **)>—• 0 wheneveria-* <x>, 
which is a contradiction. Thua F is uniformly demicontinuous 
on Dg • Let { X^ ? be any sequence of DR . Since D^ 
is weakly compact, there exists a subsequence P ^ . such 
that * -3£* ,xe and 0to € DR , Since F is weakly 

continuoua, FCiX^ > -2C-* F 6 * 0 ) . Therefore F is weakly 

compact on DR and hence F is weakly bounded on Dg • 

But weak boundedness is equivalent to boundednesa. This com-
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pleteš the proof. 
Remark 1. If F is a compact closed mapping of a do­

sed balí D R c X into X , where X, X are linear nor-
med spaces9 then F is continuous on DR • Kecali that a 
continuous mapping defined on 1^ c X is not uniformly 
continuous on D R in generál even if we impose on F the 
condition of boundedness. Let us remark that The ořem 3 is var 
lid if we replace D R by an arbitrary convex closed boun-
ded set M c X . 

Corollary Z* Suppose that X is a reflexive Banach spa­
ce, X a linear normed space. Assume that one of the follo-
wing two conditions is satisfied: 

a) F : J>R —•' V is weakly compact and weakly 
closed on 3)R c X • 

b) F: D R—*X*, DR c X (or F: D R - ^ Y , whe­
re X is a reflexive Banach space) is locally weakly sequen-
tially bounded and weakly closed on DR • 

Then F is uniformly demicontinuous, weakly compact and 
bounded on DR • 

The ořem 4. Let X, X be linear normed spaces, F a 
mapping of X into X . Then F is completely de mi compact 
on a bounded subset M c X if and only if F is uniform­
ly demicontinuous and weakly compact on M • 

Proof. (The proof is similar to that of li.M. Vajnberg'a 
theorem [ltchap.U.) Suppose that F is completely de mi com­
pact on M • Taking fx^, c*^) , X^ e M , there exista 
a subsequence { x^ J such that { F (*m,H > } weakly 
converges in X . Hence F is weakly compact. Suppose jthat 
F is not uniformly demicontinuous on II .Then there exist 
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e > O , %>* e ^ * with the fol lowing propertý: for 

every m (m sz 4^1,...) there ex i s t x^, X^ € M 

such that 1 * 4 , - *'L fl < ^ snd l ( F ( x ^ ) - F(o&), 

X * )'l í £ 0 . But t h i s i s a contradict ion. Conversely, 

assume that F i s weakly compact and uniformly demiconti-

nuous on M . Let ( X ^ , 0<^ ) be any sequence of couples 

of M such that í * ^ - «*£ II —* 0 aa m* —• co • From weak 

compactness of F i t fol lows the existence of the subsequen-

c e (*~*.> *£*, > s u c h t h a t F ' * ^ ^ ^ ^ ' * ^ ^ Ví • 

Assume /y 4* ^ an<a s e * ' ^1 - 'V-a í « 2 € . According 

to Hahn-Banach theorem there e x i s t s z>f 6 V * II Z** l - 1 

such that I ( ' V * - % , # * ) ! « I V - f - ^ i • * 2 e . Hence the­

re e x i s t s a subsequence ( ^ , , *•£*, * such that «x^»t- -

- * 1 — • 0 as A, -+ co and If F C * i ^ > - F f t £ A > , 

Z * ) I £ £ (4e » 4 , 2 , , , . ) . But t h i s contradicts the uni-

f orm demicontinuity of F . This completes the proof. 

Corollary 3» Let X be a re f l ex ive Banach space, X a 

l i n e a r normed space, F : Dg —* V a weakly continuous 

mapping of a closed bal í D R C í x l é R") c X into 

1 • Then F i s completely demicompact on DR * 

Remark 2 . I f e i ther a) oř b) of Corollary 2 i s s a t i s -

f i e d , then F i s completely demicompact on DR • 

Suppose that X i s a re f l ex ive separable Banach space. 

M.I. Kadec has shown thaťwe can introduce an equivalent norm 

in X under which X i s s t r i c t l y normed. Assume that X i s 

provided by t h i s norm. Let O be a closed l inear subspace 

of X . Define the operátor P of metric project ion on G 

by 
I x - Pot I • /rn^ I x - i f i . 
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Since X is reflexive and strictly normed (and hence strict­

ly convex), P exists and is single-valued. An element 

X e X is called orthogonal to G if Px « 0 . Accor-

ding to [5J» taking a complete linearly independent sys­

tém of the elements «e* , e * ,..., e * ,... of X* , we 

form a decreasing sequence of subspaces A D Xi 3 Xž 3... y 

where X^= { x e X : e£ ( x ) ~ 0 , Jk, m 4 % Q.,...,m,} . 

Denote by X*1, the set of all elements of X orthogonal to 

X^ • For egery .x 6 X there is a unique decomposition 

X s P""\x -f- 5t »X ? where P**, ^ are operators of met-

ric projections on X** , X ^ , respectively. 

Theořem % Let X be a separable reflexive Banach 
space, F a demicontinuous mapping of X into X • Then 
P is weakly continuous on a closed balí Pg OI& II é R ) c X 
áf and only if for any given £ > 0 and e * € V * there 

exists an integer /TLO C £, ; «e* ) such that for every m, & ̂ t0 

and «>c € J)R there is 

(2) I ( F C P " \ x ) - F(\x),-e*)l < e . 

Proof* Suppose P is weakly continuouá on DR and (2) 

does not hold. Then there exist £^ > 0 , e* € X * and 

the subsequence x ^ € \ , x ^ ^ * ^ , •*• 6 D R 

3uch that 

(3) K F f P ^ ^ ^ - F C o ^ ) , * * ) ! Ž ee . 

According to L 5 9 lemma 2Jf P^****** -^^ «*, . Hence 

F( P****,^ - ^ F C ^ ) and (3) contradicta the weak 

continuity of P . Conversely, assume that 1X^6 X^ , x o c 

€ ^ R > **** "^'fr * © • Let ^ • > ^ be any positive num-

ber, € * € Y * and suppose that there exists an integer 
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tl» (£ , -&* ) such that for every /rt d n\ 9 * € 3>̂  

there ia 

Then 

< f -HCFOP"1-*^)- FčP*X ) ,€*) ) 

for every m, 7 m, £ <rv0 . Áccording to £5J P'*''***,—> 

—^ P/n'^<0 as nm —• oo . Since F i s demicontinuous, 

F C P ^ > ^ F r P ~ * ) . T h u s F C * ^ ) 2£+F(x0\ and 

thia concludes the proof. 

Theořem 6. Let X be a re f l ex ive Banach space, X 

a l inear normed space, F a weakly continuous mapping of a 

convex closed bounded subset M c X into Y • Then 

there e x i s t s x0 € M such that fl FC»X0 )J « 

• Ámf II F(X ) (i . 

Proof* Áccording t o Theorem 3 F i s bounded on M . 

Set d * Xm,f I FCo< ) I . Then there e x i s t s a sequen-
oceM 

6 8 í **», ? € M such that _ i t w II F (<x~ )l\ = d . S in-
c e { «**i, ? i s bounded, there e x i s t s a subsequence { iX^ J 

such that * ^ JíLy x o . Then x p 6 M and F f * ^ ) «*,> 

«2£-* F C x 0 ) by weak continuity of F . Hence II F(*0 ) | é 

éé&tF(%>)lm $£z , F " w " - * .<* •« • 
other nand «i é í F(X0) II . Hence oč • II F (OÍ9 ) | and 

th ia completes the proof* 
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Remark 3 , Some of these theorems w i l l be applied in 

forthcoming páper which deals with the weak d i f f e r e n t i a b i -

l i t y of mappings i n funct ional spaces . 
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