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ONE GENERALIZATION OF THE FOURTH HARMONIC POINT
Véclav HAVEL, Brno
)

Preliminary communication x

By a frame % in an affine plane ‘P we shall mean
any parallelogram 0 J,  J .J,, . The lines 0J,, OJ, are
called coordinate axis. & determines the planar ternary
ring 'T} ((11,p.16) for which % can be identified with .

Tg * Tg where 0=1(0,0), J,=(1,0),J= 1,1), 3’_1'(0,4).
Then to each point A € 0J, \ {01} there is exactly
one point A;. e 0J,\ {01} _ such that A;, = (a', 0)
where aa =1, A= (a,0) .

Condition (1): Be given a fixed frame F*=00J, J* J; .
Then for each A € 0J, N{0}  the point AL 1s inde-
pendent on the position of the variable frame Fa= 0J,JJ,
where J,, runs over 0 J,; .

Proposition l. In an affine plane J° let there be gi-
ven & fixed frame £* = 0J, J* J,: . Then the conclu-
sion of (1) is equivalent to the "left inverse property"

2 y) a (&) = & for all a € T, N\ {0}, &€ T,
where the multiplication is taken with respect to '7;,,‘ .

Copvention. If the element @' with @’a = 1 de-
termined for a € 7;,* N{0} satisfies also the eqation
aa’ = 1 then we shall write a’ = " .

Lemmag 1. Let T be a Veblen Wedderburn system ([1],
pP+17) with the left inverse property. Then for
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(3) al(-1)z -a forall ae€ T ,

(49) (a(-N(-"=a faal aeT ,

it holds (3) &= (4), and (3) implies

(5) a@a(-&)=-& forall a,be T .

Lemma 2. Let a translation affine plane & satisfy (1).
Then (3) holds in T, iff in P  there holds
(60 & A;B,C,, A B, C, are triangles such that A, A, €
¢ OJ,“; B, B, € 0,5 C,Ce03% A CTA, C, /Oq,;B,C,IB‘CzIﬂJ;;
AB, 13, I then AB 73,3

Lemma 3. Let a translation affine plane % satisfy (1).
Then (4) holds in Tg, iff, in £ , it holds

(7’,,) Ir A, B, C;, D, Azbz (!2])2 are parallelograms such that
A,C, AL € 00% B,C,,B, € ON (N the ideal point of the
line J‘X'J,: ); 4D, /G D, /03,5 A,,D,l/‘\‘,.'D,./0..7,":l then
B, € ON .

Proposition 2. Let P  be a translation affine plane
satisfying (1) and (644 ) Then (6!. ) is valid for all fra-

*
nes F= 03, I3 J., with J’ 3 0J,
Lenma 4. Let % be an affine plane with a fixed fra-

me £*= 0J, J* .7,‘; + Then the "right inverse property”

. (839‘) (a;»lr’)ié' Q‘q,' for all a«éTr;,,}s'[;,‘\{Oi,
is satisfied in "l;,‘ iff, in P , there holds

(9,,) ir A1 BC .D1 ’ A‘ Bz ¢ D are parsllelograms
such that A, B, /C, D, /A, B /(D 403,35 A D, 78B,C 7/

WAy By 4 C D, 107, 5 ADy 1B, C 1A, D, 1 B, C /055 B, €08
ch{- Azcz = 0.7* then Dz € 0D1
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Proposition 3. Let £ be an affine plane satisfying
(1) and (94, ). Then (94 ) holds for all frames & =
=093, Xy € 0.?" iff the "general right inverse pro=
perty" is valid in T;.,. :
(1040) (Cac)(e™#). ¢ =a(be) fordla,beTps
and ¢ € T, N {0} .

Remark. If T;.,. possesses associative multiplication
then (10, ) is Mlfilled. Moreover, if Tex 1s an alter-
native field, (10’,) is satisfied. Further, the associati=-
vity of multiplication in T;, is equivalent to
(11ga) (@e)(c’) = at  for all @, # € T s
ce TpaNi03 o

Lemma 4°. Let % be an affine plane with a fixed
frame $*= 03, J* JF . Then, in T, , there nolds
(|8,,) a'@ab)=L forallae T,,\N{0j; e Tpu
iff P satisfies

(9;,) r AB ¢ D, Asz ¢ ) are parallelograms such

that A, B, /C D /A, B, VC, D, 100,35 A; D, /B, C 1A, D /B, C/
1035 B,Co= A D, ;A €0A; B e0B, C ¢ 0C thn De0].
Broposition 3°. let % be an affine plane with a fi-
xed frame F*= 03, 9% 3}  and let (8,),(87,) be satis-
fied. Then (8;, ) holds for all frames F= 0J, J J" with
>
Jy.€ 0 X -
Defipition 1, Let % be a translation affine plane
satisfying (1), Let T,, satisfy the condition 1+1 4 0.

If A,B,C are pairwise distinct points on the coordinate
axis 0J,  such that C & M,,  (the "middle point"
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of A,B ) the triple (A,B,C) will be called an gdmissible
triple. To each admissible triple (A,B,C) we associate

the point H::c in the following manner: Write A=

s (a,0), B=(l,0), C=(c,0) with respect to Tex
and construct the points SBA J*Y e B, ,5C A 0*Y =,

( ¥ the ideal point of DJ; , S ="(a, 1) ), further
the point D; such that B, = Mc, Dy and finally the

point Hf::,_ = SD, A 07T, .

Proposit ion 4. From the assumptions of Definition 1 it

»
follows Hrnc - anc for all frames ¥ = 0J, J Jy

with Jy € 0 J,; and for all admissible triples
(A,B,C) .
Lemma 6, Let P be a translation affine plane satis-

fying (1),(6“ ),(9ﬂ) and 1 +1 & (0 in 1}4 « Then
for A= (4,0), B=(-1,0),C=(e,0) %« (0,0) it fol-

lows. HA’;C = (e,0) .

Definition 2. Let # be a translation affine plane sa-
tisfying the assumptions of Lemma 6. By & von S’tgggt projeg=
tivity on 0J, we shall mean a bijection & of 0Jy
onto itself preserving at both sides all admissible triples
and all points H:; (where (A,B,C) runs over all
admissible triples).

Proposition 5. Let /  be a translation affine plane
satisfying the assumption of Lemma 6. If 6 is a von
Staudt projectivity of 0J,  with fixed points 0, Jx
then the mapping 6 : Tye —% T,x  defined by A% =
-(aﬁ, 0) for all A= (a,0) € 0J, satisfies

the conditions
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(ig ) (a + 2% 2% &% for all @, & € Tyu,

6o \~
(iig ) (a"’)" s (a®)! for all a«e"l;.\{o}.

Conversely, if @@ T,.; a4 T’-’ is a bijection with
fixed elements O,1 and if (1p ),(11,,, ) are fulfilled then

the mapping $°’ :0J, — 03, defined by AP'. (af', 0)
for all A = (@, 0) € 0J, is a von Staudt projectivity
of 0 Jx .

- s o > 2 o e o o
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