Commentationes Mathematicae Universitatis Carolinae

Jiří Kopáček

The Cauchy problem for linear hyperbolic systems in L_p

Commentationes Mathematicae Universitatis Carolinae, Vol. 8 (1967), No. 3, 459--462

Persistent URL: http://dml.cz/dmlcz/105127

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1967

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-GZ: The Czech Digital Mathematics Library* http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae 8, 3 (1967)

THE CAUCHY PROBLEM FOR LINEAR HYPERBOLIC SYSTEMS IN Lp Jiří KOPÁČEK. Praha

In [1] P. Brenner has proved that the Cauchy problem for the hyperbolic system

(1)
$$\frac{\partial u}{\partial t} = \sum_{j=1}^{m} A_{j} \frac{\partial u}{\partial x_{j}} + Bu ,$$

(2)
$$u(0,x) = u_o(x)$$

is correctly posed in L_n , $1 \le n \le +\infty$, $n \ne 2$, if and only if A_j commute, provided A_j are hermitian. In this paper we generalize this result to a more general class of hyperbolic systems.

<u>Definition 1.</u> We call the system (1) hyperbolic if the $N \times N$ matrices A_i , B satisfy the following conditions:

- 1. The matrix $A(x_j) = \sum_{i=1}^{n} y_i$, A_i has, for all $y \in R_n$, only real eigenvalues and can be diagonalized by a similarity transformation $T^{-1}(y_i) A(y_i) T(y_i)$ for all $y \in R_n$.
- 2. There exist such positive constants C_1 , C_2 , C_3 that $\|c_{f_1}(x_1)\| = \|e^{t(iA_f Y_i) + B_f}\| \le C_1 + C_2 \|x_1\|^{C_f}$ for all $y \in R_m$, $t \in \langle 0, T \rangle$.

Remark. The condition 2 is fulfilled, e.g., if the mat-

rices $T(A_j)$, $T^{-1}(A_j)$ from the condition 1 are bounded on the unit sphere in R_m (hyperbolicity in the sense of Petrovsky) or if B commutes with all A_j s. In the first case, $\|e^{iA_j}A_j\|$ is bounded and from this and the representation $\varphi_i(A_j) = e^{itA_jA_j} + \int_{-1}^{1} e^{i(t-a_i)A_jA_j} \varphi_{a_i}(A_j) da$ follows the boundedness of $\|e^{t(iA_jA_j+B_j)}\|$ by the Gronwall's lemma. In the second case, $\|e^{tiA_jA_j}\| \leq C_1 + C_2 |A_j|^{C_2}$

with appropriate constants C_1 , C_2 , C_3 (see e.g. [2], p.93), and we have $e^{i(A_{ji}A_{ji}+B)}=e^{iiA_{ji}A_{ji}}$. e^{iB} .

Definition 2. We say that the problem (1),(2) is correctly posed in L_n , $1 \le p \le +\infty$, if, for arbitrary $u_o(x) \in \mathcal{S}$, there exists a solution of (1),(2) in the L_n -norm (by which we mean that it satisfies for all $t \in (0, T)$, $\lim_{h\to \infty} \frac{1}{h} (u(t+h)-u(t)-\sum A_i \frac{\partial u}{\partial x_i}-Bu \cdot 0$ in L_n and $u(0,x)=u_o(x)$) continuously depending on $u_o(x)$, i.e., there exists a constant C(T) independent of $u_o(x)$ such that

 $\|u(t,\cdot)\|_{L_n} \leq C(T)\|u_o(x)\|_{L_n}$ (see [1]). Here $\mathcal G$ denotes the space of infinitely differentiable vector-functions in R_n each component f_j of which satisfies the inequalities $||x|^m \mathcal D^r f_j(x)| \leq \mathcal C_{m_T}^j < +\infty$ for all $\mathcal T = (\gamma_1, \gamma_2, ..., \gamma_n)$ and $m \in \gamma_n$, m = 0,1,2,... and all $x \in R_n$.

Firstly, we note that, for each $u_o \in \mathcal{G}$, there exists the classical solution $u_o(t,x) \in C^\infty$ of (1),(2) such that $D^\alpha u_o(t,x) \in \mathcal{G}$ for all $t \in \langle 0,T \rangle$ and all $\alpha = (\alpha_o, \alpha_1, ..., \alpha_n)$, $\alpha_n = 0,1,2,...$ (which may be obtained by Fourier transformation).

Repeating the proof of Theorem 2 in [1] we obtain the following

Theorem 1. Let the system (1) be hyperbolic in the sense of Definition 1. The Cauchy problem (1),(2) is correctly posed in L_n , $1 \le n \le \infty$, if and only if

(3)
$$\sup_{\substack{t \in \langle 0, T \rangle \\ u_0 \in \mathcal{Y}}} \|u(t, \cdot)\|_{L_{p_0}} / \|u_0(x)\|_{L_{p_0}} \leq C(T) < + \infty$$

where $\mathcal{M}(t, \times)$ is the above mentioned solution of (1), (2) corresponding to $\mathcal{M}_{a}(\times)$.

It is sufficient to see that (3) is just another form of (*) in [1].

Theorem 2. Let the system (1) be hyperbolic in our sense. If the Cauchy problem (1),(2) is correctly posed in L_{p} , $1 \le p \le +\infty$, $p \ne 2$, then the eigenvalues $\lambda_{j}(n_{j})$, $j = 1,2,\ldots,N$, of the matrix $A(n_{j}) = \sum_{j=1}^{n} n_{j} A_{j}$ are linear homogeneous functions of N_{1} , N_{2} , ..., N_{n} , i.e.,

 $\lambda_{j}(u) = \sum_{k=1}^{n} \lambda_{k}^{j} u_{k}$ for all $u \in \mathbb{R}_{n}$, where λ_{k}^{j} (j = 1,2,..., N, k = 1,2,..., n) are the eigenvalues of A_{k} .

We omit the proof because it is only the repetition of corresponding arguments in [1].

Corollary. If the problem (1),(2) is correctly posed in L_n , $1 \le n \le +\infty$, $n \ne 2$, then the matrix A(n) must have multiple eigenvalues for some $n \in \mathbb{R}_n$ provided $n \ge 2$. Thus for strongly hyperbolic system the Cauchy problem is not correctly posed in L_n , $1 \le n \le \infty$, if $n \ne 2$ and $n \ge 2$.

The main result of this paper is the following theorem.

Theorem 3. Let the system (1) be hyperbolic in the sense of Definition 1. Then the Cauchy problem (1),(2) is correctly posed in L_n , $1 \le n \le \infty$, $n \ne 2$, if and only if A_i commute, or if (what is the same) A_i can be diagonalized by the same similarity transformation.

<u>Proof.</u> Necessity. By Theorem 2 and Theorem 2 in [3] it follows that if (1),(2) is correctly posed in L_n , $1 \le n \le \infty$, $n \ne 2$, then A_i commute. By Theorem 1 in [4], p.10, A_i have a common diagonalizing similarity transformation.

Sufficiency. If A_j commute then there exists a regular matrix T such that $T^{-1}A_jT=\Lambda_j$ (j=1,2,...,m) are diagonal matrices. Then the problem (1),(2) is equivalent to the problem

(1')
$$\frac{\partial v}{\partial t} = \sum_{i=1}^{n} \Lambda_{i} \frac{\partial v}{\partial x_{i}} + \widetilde{\beta} v ,$$

(2')
$$v(0,x) = T^{-1}u_{0}(x)$$

with $v = T^{-1}u$, $\widetilde{B} = T^{-1}BT$ But the problem (1'), (2') is correctly posed in L_{τ} (e.g. by Theorem 2 in [1]).

References

- [1] P. BRENNER: The Cauchy problem for symmetric hyperbolic systems in L_p , Math. Scand. 19(1966), 27-37.
- [2] Л. ВЕРС, Ф. ДЖОН, М. ШЕХТЕР: Уравнения с частными производными, Москва 1966.
- [3] J. KOPÁČEK: On pairs of matrices with property L, Comment.

 Math. Univ. Carolinae 8(1967), No. 3, 453-457.
- [4] Д.А. СУПРУНЕНКО, Р.И. ТЫШКЕВИЧ: Перестеновочные матрици, Минск, Наука и техника, 1966. (Received May 18, 1967)