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THE CAUCHY PROBLEM FOR LINEAR HYPERBOLIC SYSTEMS IN Lp

Jirf KOPABEK, Ppaha

In (1] P, Brenner has proved that the Cauchy problem
for the hyperbolic system

o e -
(1) 5t s Aj; 5% + Bu ) .
(2) w (0, %)= u, (x)

is correctly posed in Lp’ 1é¢ pn€+o00, n *2 , i
and only if A, commute, provided A; are hermitian. In
this paper we generalize this result to a more general class
of hyperbolic systems.

Definition 1, We call the system (1) hyperbolic if the
N »x N matrices Aé , B satisfy the following conditions:

[ 3
l. The matrix A(y) = ,.2' Y; A}- has, for all

N € R” ,only real eigenvalues and can be diagonalized by a
similarity transformation T (ng) Alng) T(g) for all

Yy € R, .
2. There exist such positive constants C,, C,, C,
(i A B)
that g, ) le (4% P0G ¢ + G iy (B for all

yeR, ,te<0,T).

Remark. The condition 2 is fulfilled, e.g., if the mat-
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rices 1 (4 ) , T'q(ry) from the condition 1 are bounded "
on the unit sphere in R,  (hyperbolicity in the sense of
Petrovsky) or if B commutes with all Ay ‘s. In the first
case, | e"w 4 i is bounded and from this and the repre-
sentation ¢ () = e""*"“ +'_/'$e‘“'“w" A % (4)du

follows the boundedness of | £f“%#43 +8) by the Gron-
wall’s lemma. In the second case, lef W™l € ( +( g1

with appropriate constants C, , C,, c, (see e.g. [2],
p.93), and we have el Gting Ay ot

Definition 2. We say that the problem (1),(2) is correct-
lyposedin L, , 1€ p €+ o , if, fa arbitrary
w,(x)e .Y, thére exists a solution of (1),(2) in the Ly~
nem (by which we mean that it satisfies for all te <0, T),

m ;;az.(um-ucﬁ-ZA,gj-fTBmoh Lnand 4 (0,0)= i, (x))

continuously depending on 4, (x) , l.e., there exists a con-
stant C(T) independent of 44, (%) such that

fTawct, . )Ill_” € C(T) l44,(.\<)lll_’L
(see [1)). Here ¥ denotes the space of infinitely differen=-
tiable vector-functions in R,  each component ‘F,' of
which satisfies the inequalities |IX|™D7# (X)) & C:;r<+ o
for all 9= (%, %, %) add n ( 25 , m=0,1,2,...)
and all x € R, .

Firstly, we note that, for each &, € 4 y ‘there e~
xists the classical solution « (t,x)e C® of (1),(2)
such that D w (t, x) 6 ¥ for all t € <0, T) and
all « = (x,,x,, ..., ), Cpul,1,2,. (which may be obtai-
~ ned by Fourier transformation).
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Repeating the proof of Theorem 2 in [1l] we obtain the
following

Theorem 1. Let the syst'em (1) be hyperbolic in the sen-
se of Definition l. The Cauchy problem (1),(2) is correctly
posed in L, , 1 €1 € oo | if and only if

(3) tc(ﬁ)“"(t")"-p/la.(x)l‘_ € C(T)c + o0

we *
where 44 (t,X ) 4is the above mentioned solution of (1),
(2) corresponding to 4, (X)) .

It is sufficient to see that (3) is just another form
of (x) in [1].

Theorem 2. Let the system (1) be hyperbolic in our sen=
se. If the Cauchy problem (1),(2) is correctly posed in L g
1€ € +00, o & 2 ,then the eigenva];::es Aplg) , 3=

= 1,2, essy N, of the matrix A(n) =’,.Zq Y Ay are li-

near homogeneous functions of #44,, 4,,..., 4, , l.e.,

7‘4‘"’";% Ai Y% forall 4 € R, , where af, (j=
1,25000y N, k =1,2,..., n) are the eigenvalues of A, -

We omit the proof because it is only the repetition of
corresponding arguments in [1].

Corollary. If the problem (1),(2) is correctly posed
inl,, 1€ n € +, 1 4 2, then the matrix A(y)
must have multiple eigenvalues for some n € R, provi-
ded m » 2 . Thus for strongly hyperbolic system the Cau-
chy problem is not correctly posed in Lp, 16 n € o,
if n el and m » 2. ,

The main result of this paper is the following thedrem.
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Theorem 3. Let the system (1) be hyperbolic in the sen-
se of Definition 1. Then the Cauchy problem (1),(2) is cor-
rectly posed in L, , 1én € @ , o # 2 , if and
only if A;  commute, or if (what is the same) A; can
be diagonalized by the same similarity transformation.

_Proof. Necessity. By Theorem 2 and Theorem 2 in [3] it
follows that if (1),(2) is correctly posed in L, , 1€ 1 €
€, # 2 then A; commute. By Theorem 1 in [4], p.10,
A,‘ have a common diagonalizing similarity transformation.

Sufficiency. If A; commute then there exists a re-
gular matrix T such that T'%’T- /\3 (3 =1,2,..., m)
are diagonal matrices. Then the problem (1),(2) is equiva-
lent to the problem

av.gA a‘l’

~
; —— + By,

(S0 5t  se1 ¥ dx;
2% vo,x) = T a, (x)
with =T, BT BT But the problem (1°),

(2’) is correctly posed in L., (e.g. by Theorem 2 in [1]).
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