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ON PAIRS OF ‘MATRICES WITH PROPERTY L
Jif{ KOPACEK, Praha

In (1] T.S.Motzkin and O.Taussky have proved the follo=-
wing theorem.

Theoreml. Let A,B be two m =< m matrices satisfy-
ing the conditions '

l.A and B are hermitian,.

2. The eigenvalues A,, Ay, -++y A, and w,, (©,,
...,(u,, of A and B respectively can be ordered in such a
way that, for every @ and @3 real, aA;, + BA; are all
eigenvalues of the matrix o« A + QB (property L ).

Then AB = BA .

The aim of this paper is to generalize this theorem, or,
more precisely, to prove

Theorem 2. Let A,B be two m x m matrices, sa~
tisfying the following conditions:

le Both- A and B have only real eigenvavlues .7L.‘; and
@i respectively ( 1 =1,2,..., n) , and the matrix xA+/4B
can be diagonalized by a similarity transformation (depending
in general on &« and f3 ) for every real oo and 4B .

2, A, B have the ‘;Sroperty L.

Then AB =BA and A ar;d B can be diagonalized by

the same similarity transformation.
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Proof. It is sufficient to construct a matrix T ,

det T % 0, suchthat Aw T AT ana B TBT
are hermitian. Since A and B will also have the proper=
ty L., they commite by Theorem l,and so do A and 3B .
For the construction of such a matrix we consider the matrix
A(xx)= o0 A+ B and rearrange its eigenvalue & A, + @&,
in A &m groups in the following manner: two eigenva=-
lues e« Xy + W, and A, + @ belong to the sar
me group if and only if A, = A, , 4 = M, ., It will be
convenient to consider A (o) for all complex numbers oc .
Since the both sides of the equality

det (x E-A(x)) a*fI‘ (X=X @ - iy )
are polynomials in o we have that o A, + @, are all
eigenvalues of A (a) for all complex o . Noreover,
A(a) can be diagonalized by a similarity transforiation
T-"¢x) ACt) T(x) for all complex o¢ ., This fact can
be seen as follows.
If £ &k ,the equality aw A, +y = XA, + g holds

either for all complex o (if A « 4, , % = (44 ) or for

“ -

T= Xpp = -z ! Im oy, = 0 (for Ay # Ay ), or

a,a‘+&+¢.al+ (4p for all complex o (if A, = A, ,

(% * (* ). Thus we have that, for every complex o« dif=-
ferent from e,, , the matrix A (a«) has k diffe-
rent eigenvalues 002.014(:.4.‘1, wh,,‘+ (Lny 10001 & Ay + Hag
each of then} having the same m\:lltiplicity for all such o which
we denote by @z, 4 = 1,2,..., A . Let Nj(x) be the

corresponding eigensubspace. Its dimension is Ps because
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the rank of the matrix (toc.?.,; (w,‘) E - A(x)) being
€m-p; forreal o« , it is & m-p; also for com=
plex oc (its minors are polynomials in o ). Thus
dim N; (@) » ©; . But it can’t be > @; for & & %G,
In each Nj (@) , we can choose an orthonormal basis
tf (), t: (X )jeee, t;} (a) . Moreover, if o, 1is arbitra-
ry complex number different from ¢,, , we can choose these
t: (x) to be analytic in some neighbourhood of o, ., The-
se bases are not deternined uniquely, one of them can be ob~-
tained from anothepr one by appropriate unitary transforma=
tion. Thus the matrix T (o) diagonalizing A(a) is not
determined uniquely (the columns of 1.(OL) are vectors
t:(x),j.r.- 12, 0,4, £ =1,2,.,0 ), but it can be
easily seen that the matrix T(ax) T *(c) does not depend
on the special choice of ti () in each point o dif=-
ferent from oa,, . Since tf (x) can be chosen analy-
tic in some neighbourhood of each « +# a&,, , we see that
T(a)T*«) is analytic for all o %, »and it is boun-
ded. Thus it must be a constant regular matrix, say C .
Thus we have obtained that there exists, for all « - Ton 7
a regular uniformly bounded matrix T(«x) satisfying, far
such o the conditions
(1) T(e) T™(x) = C

(2) T(x) A(xx) = « A+ M ,

C being a hermitian regular matrix and
A, ey
A = A‘l M= “‘ .
A &

~
o
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Prom (1) it follows that I T “(x) = IT“(mc"lsaT*m)uc-’:,'

‘and then
(3) 1T 7(x) | & comal .

Let o, , X, % o, ,x 9 0 , be real andu%t oxn = 0.

We can assume that T (ex,)— T (taking an appropriate sub~

sequence if it is necessary). From (3), T 4is regular and
TJ(ag,,)-—b T~ . From (1) ad (2) we obtain

(4) TT*= ¢,

«(5) T'BT =M.

Moreover, we have, for all o, ,
Al ) = Tl ) (xp A+ M) T, ).
Multiplying by 7" ana T s We get
X T AT + T'BT = &, T'AT+ M =

= T T, e, A+ M) T e, ) T= TFT e, Yoy, A+ M)T te,) T,

where we have used (1),(4),(5)., Since the right-hand side and
M -are hermitian, and o, % 0 isreal, T AT  1is also
hermitian. Thug the matrix with above mentioned properties

is constructed. By Theorem 1, At = EK where A= T'AT

and Bx T"BT= M ‘and thus

AB= TAT'TE T = TEAT "~ BA .
By Theorem 1 in {2] (p.10), A and B ocan be diagonalized by
the same similarity transformation. The proof is complete.
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