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Commentationes Mathematicae Universitatis Carolinae

8, 3 (1967)

ON THE DIFFERENTIABILITY OF MAPPINGS IN BANACH SPACES
Véclav ZIZLER, Praha

1, Introduction. Throughout this paper E, E1 denote
the real Banach spaces, R (or N ) the set of all real (or
natursl ) numbers, F: E — E, a mapping of E into E,.
Let E” bethedual space of E, (x,e) the value of ¢ € E’
at the point x € E . Let K, = {xe E; lxl & n ¢} :
denote the closed ball in E of radius 4 > 0  about the
origin; let S, denote the boundary of K, . By (E — E )
there is meant the space of all linear bounded mappings of E
into E, (with the topology of uniform convergence on K, ).
We shall use the symbols " — " and * ¥, " to de-
note the strong and weak convergence in E (or in E” ), A
mapping F : E — E, is said to be weakly (stroi:gly)
‘continuous if X, X, x implies F (X, )% F(x)

(F(X, ) — F(x)) . The symbol L[ x,,4 ] , where
Xo,Ys € E , denotes the element of E > E and a neighbour-
hood of [ X, , %, ] is taken in E < E , By VF(x,, ~)
(DF (X, ,#)) we denote the GAteaux (lineam Gfteaux) dif-
ferential of a mapping F : E — E, at x, € E . If
DF(x,,#) 1is continuous in e E, F: E2E. is
said to have the GAteaux derivative F’(X,) at Xo . We
shall say that & mapping F : E — E, has the Fréchet
differential d F (x,, /) at Xx, € E if
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F(x,+ h)- F(X,)- d.F'(.x.,h)-!-w(x,,h), #H e E , where

. law (X, A1 _ 0.
d’ F(xp 9 ’h ) is linear in h 8!\%’;&,‘% ———"i—l-———-

A mapping F : E — E, 1s said to have the Fréchet deriva-
tive F’(x,) at x, € E if d F(x,,4) is boun-
ded on S; . By the symbol " neighbourhood of x, " there is
always meant the convex symmetric neighbourhood of x, € E.
In order to omit the assumption of linearity of d F(X,, 4 )
in h Suchomlinov ( [8]) introduced the concept of a bounded
differential as follows:

Defipition 1. The mapping F : E — E, is said to ha-
ve a bounded differential o VF(x,, ) at X, E 1if
the following conditions are satisfied:

F(x,+ th)-F(x,)
t=>0 t

1) =dVF(x,,44) uniformy

with respect to A l=1, he E ,

2) AdVF(x,, &) 1s bounded on S, ¢ E .

The connections between the existence of the Gateaux and Fré-
chet differentials for mappings in Banach spaces were studied
in [Y), [2],03],(4),(5],061,07],[8],[9]. L.A. Ljusternik, V.I.
Sobolev ([7],chapt.8,§ 3) derived that if VF (x, A ) 1is
continuous in .h € E and uniformly continuous in a neigh-
bourhood of x, € E in the sense of (E — E, ) then F
has the Fréchet derivative at x, . The following result is
due to M.M. Vajnberg ([1] th.3.3): If the Gateaux derivative
exists in some neighbourhood of x, and is continuous at x
in the topology of ( E —» E_ ) then P possesses the Fré-
" chet derivative at X, . Another result has been established
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by G. Marinescu ([8]): Suppm e that the GAteaux differential
VF (X, 4 ) is continuous in x in a neighbourhood U (X, )
of x, (for an arbitrary but fixed - € E ) anda VF(x,h)
is continuous at h = O for every fixed X € U (X,). 1If
VF(x, /) 1is directionally continuous at x, uniformly
with respect to s € E, |l Al = 41 , then F has the Fré-
chet derivative at X, € E . The result of N.N.Ivanov ([5])
is as follows: Let X be a finite-~dimensional Banach space,

§ : X — R areal functional on X . If there exists the
Gateaux differential V+ (x,, A ) and f satisfies the
Lipschitz condition in a neighbourhood of X, € E , themn:
f has a bounded differential at x, € E ., J. Kolomy ([6))
has proved that if VF (X, #/2 ) exists in a neighbourhood
of X, € E ( E is reflexive) and is strongly continuous
Jointly in [ X,, 4+ 1 ( h is an arbitrary element of E ),
then F : E — E, possesses the Fréchet derivative F(x,)
at x, € E .

The purpose of this paper is to show some other conditions
for the existence of bounded and Fréchet differentials. I wish
to thank J. Kolomy for the suggestion of this problem.

2. Theorem ). Suppose that a mapping F : E — E, has
the Gdteaux differential VF (x , 42+ ) 1in some neighbour-

hood U (Xx,) of X, € E . Let the following conditions
be fulfilled:

1) Lom AVF (%, th, )= VFGx,, k)l = 0
- 1

uniformly with respect to lhl=r , h e E , where 2 > 0
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is some fixed real number.

2) VF(x,, 4) 1s bounded on S, .
Then F possesses a bounded differential & V F (x,, )
at x, € E .

Proof. Let h be an arbitrary element of E . Since
Fix,+th)=F(x, )= VYF(X,,th)+w (X, th) ,

W (X, , tA)

1) tm ———;—-——-—l = 0 (h 1is a fixed element),
t+0

Assume that this limit is not uniform on S, , where %« > 0
is such real number that X, + K, © U (x, ) . Then there

exists € > 0 with the following property:

For every m € N there exist b, € S, and t,,
such that 0 < I t, | < % and
(Xo, tm Ay)
(2) | 2Ry oz e
m

Let M e Sy  be an arbitrary element of S, , then for
any € > 0 there exists. m, € N such that for eve-

rym =2 m, ,m € N there is

W (Xy, ty A)

€
& = .,
(3) 1 "y I & 3

Since
Flxe+t, M )=F(X,)= VF(Xo, Ty A+ @ (X, tn ) .

F(y+ ty M ) - F (X )= VF(Xo, b A) + @ (X,, 8, P, ),

we have
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This fact implies

ey m-/

(Xo , tn M
'(_“_’Q_:%»_"_"zl,c..)lén“ ‘tu )‘.ﬂ¢”l+

+IVF(lxo.'"c“t“""4y,h,”)- VF(xg,h“)' . '.eﬂl- ' +

+IVF(X,, )= VF(x,+2.  t A, h)l-Ne, 1 .

In view of Hahn-Banach theorem there exist ¢, € E

/ such
4
that e, I, = 1 and
0y tm M.
l(w(x.,t”ha),¢”)|= ”w(t";ﬂ m)” .
: t, th

Therefore

W I W (Xo st A,) | & | w(.x.zt,.,h). +
tm tn

+ AVF X+ Tt A, 4, ) - VF (X, A ) 1 +
+ AVF (X M) = VF (Xy+ Tt A1, ) I

For € > 0  there exista m, « N

such that for
m&m,, mé€eN

(5) BVF (Xt Tmtm Mmy hp)=VF (X, )l +

' €
FIVF (Xt bty by h) = VF(x,, mII & .

But (4) together with (5) and (3) contradiets the relation (2).
Hence the limit

tm, Xt th)-F&) |y gy
t+0 t
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is uniform on S, . The boundedness of & VF (x,, # ) fol=
lows immediately from the second condition of theorem l. This
completes the proof.

Lemma 1. ([91,§5 26.7) Let F: E ~> E, Dbe a conti-
nuous mapping in some neighbourhood of x, . If there exists
DF(x,,#) , then DF (x,, /o) 1is continuous in
heE.

Corollary l. Let F: E — E., be a mapping of E
into E; continuous in some neighbourhood of i, « Suppose
that there existe VF (x, . ) in a neighbourhood of
x, and is such that t.t_li': lI.VF(.x,-r- th, h)-VF(x,,)i=0

holds uniformly with respect to #h e E , Il = 1 .
Let there exist DF (X, , /) . Then the mapping F has
the Fréchet derivative F’(x,) at Xx, € E .
Definitiopn 2. We shall say that a mapping F: E — E,
is directionally continuous in a convex symmetric neighbour=-
hood WU (x,) of x, € E if F is continuous along any
line-segment in U (X, ) .
Theorem 2. Let E be a reflexive Banach space. Suppose
that F: E — E, is strongly continuous in (K, + X,)
where % > 0 is some real number. Assume that there ex—
fsts VF(x, /o) in (K, + Xx,) and is directionally
continuous in ( K, + X, ) along the line-segment connecting
x, ,x (x € X, + K,) . Let VF(x,, -1) be
strongly continuous in 1 € E . Let us define a nonlinear
functional by
g, 0h) = | [ (Ve T th, h) - VFx, N d ], hs Ky
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and suppose that gt Ch) has the following property:
There exists € , 1 > € > 0 , such that if |t | & € ,
It 1€ €,it, 1 £ |t then
(6) %, (h) & g (4h) for every b € K, -
Then F possesses the bounded differential
dVF(x,, h) at X, € E .
Proof. Let h be an arbitrary (buf fixed) element
of K, .Since € € (0,1), %X+ the x,+ K, and for
t+ 0,Itl& € ,according to theorem 2.7 [1] we have

Flxer th)- F(x) _ rYF(x,+7th hldz .
t )

Suppose h, € K, , h, ¥ h, h e K, . Since ¥ 1is
strongly continuous on ( K, + X, ) ,

F(Xe+ t b, )= F(X,) F(xo+th)- F(x,)
n - t

forany fixed t , t « 0, |t]l & € whenever m - 00 .
Therefore h, ¥ 0 h, ,h € K,,It|l € € imply
Vst thn, b )dt o [V (xrrth, h)dT
vhenever m —» o . Since VF (x, , ) is strongly
continuous in h , /’vr(.x., M YT [V, 0T

Hence

. _
Lim I [ VF(X s 2t by, b )= VF (X, 1, Yazll =

IS OVF (Xo+ Tth, h) = VF (0, Ndz I -
0

Thus ¢, (A )  is strongly continuous in h on K,
for an arbitrary (but fixed) t , It| € € . Suppose that

it, 3 1s a sequence of real numbers such that It,, | £ €,
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“,l_ér: t,=0, 1t , | & 1%t | . According to (6) gfm(h)
is a monotonic sequence of strongly continuous functionals in
Ky o

Employing our assumptions we see that op (4 ) weakly
converges to the zero-functional on K, . By the slight gene-

ralization of the Dini theorem in Banach spaces ([1] § 22.4)

m-% %, ()= 0 uniformly on K, . Now let us assume

that &m ¢, (A) = 0 1is not uniform on S, . Then there
tao 7t

exists ¢, > 0 such that for every m € N  there
exist #, € S, and t, with the property that 0 < '
<lt, 1< % and ¢ (h, ) & €, . Passing to  sub-

sequences {t""b} , {h@b; such that  tim the = 0,

| t,‘,‘ﬁl € ltﬁhl we obtain S&ﬁ& (h"‘k )2 g . But this
contradicts the fact that h% ‘-’*nh ()= 0 1is uni-
form on K, . But the strong continuity of VF(Xx,,# ) in
h implies the boundedness of VF(x,, A ) on S, . This
completes the proof.

Corollary 2. Let E be a reflexive Banach space,
F: E —» E,| a strongly continuous mapping in (X, + K, ),

# >0 such that VF (x, ) 1s directionally conti-

nuous in x on X, + K,‘ along the line~segments connec-
ting x, , x, X6 X, + K, (h is any fixed element of
E ). Suppose that there exists ¢ , 0 < € < 1 such
that for It £ €, It, 1.8 e, It, |l & It]

LS OVF(xo+t, Ty b= VF (X, h Nz Il £
0
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6 I [1OVF(xpstTh, )= VE(x,, Va2 I -
0

If DF(X,, /o) 1s strongly continuous in 4 € £ , then
P has the Fréchet derivative F’'(x,) at x,

Definition 3. A mapping F : E —% E, 1is said to be
completely compact on a bounded set cw ¢ E if E is com=
pact and uniformly continuous on @ .

m_. ((11,§ 1.4) A mapping F: E — E, 1is com-
'pl'etely compact if and only if the following condition is ful-
filled: It {Xx,3%,{ .x; # are the arbitrary sequences of @
such that %m X, - X, | = 0 , then there exist the

subsequences { X, §, { X. with the property
The “h

Lom, F(x

Wi F ) = i F ()= e e Ky

m;.) Let F be a mapping of E into E, . Sup-
pose that there exists the GAteaux differential VF (x, A )
for every x € (X,+ Ky) (x > 0).If VF(x, h) 1is
complefely compact in (X, + Ky, )x K, € E > E , then PF
has the Fréchet derivative F’(x,) at x, € E .

Eroof. Let h_, h be the arbitrary elements of E such
that h, € S, , h € K, . We have

F (3 +tn M) = F(x,) = VF(X,, by Ao V4@ (Ko, tay Fp )
F(x.*f‘ tﬂth)- F(X,)ﬂ VF(XO,tﬁh>+ w(‘x‘7¢ﬂvh) .

Suppose that the limit :
(x,,th
Lm |l _a_"__"_;_?____)” = 0
. tw0

is not uniformon S, ¢ E . Then there exists € > 0

¥, G becfraats-

coakwrﬁf‘-.".’("a - 424 -



with the following property: There exist b, € S, and %
such that 0 < I t, | < ,-,1; and

W (Xoy by N )

4
Let €, € E; be any arbit rary elements of E, . By the
mean-value theorem
) @ (Xe, ty )
( a)(o(ot,tﬂ, 'm ’_e”). ( Oit'ﬂ- ,e”)"_
" e d

+ (VF(Xe+ Tt by Py )y €0 ) —
~(VF(Xo+ Tty h, ), €0 ) +
+UVF (X, M )= VF(Xoy b1 ), €n ) -

According to Hahn-Banach theorem there exist €, = E; such
that || ¢, IE; = 4 and

o A,
| (Qeatnha) o ). | LEeialnly
"
Hence

n

" m)T m
»

- VF(x,, oy W+ I VF (Xt Tata b, b)) -
-~ VF(x,, )l .

Since VF (X, A ) 1is completely compact on(x,+Ky)x K, ,

passing to the subsequences {[X’*T"*t'!th""b’h‘%n' {[x,,hﬁjj,
we have that
u% VF(x, + Tﬂhtﬂbh”*,hf*).h% VE (X, Am, ) -

L)
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Again we can extract a subsequence { nh § such that for
the sequences {Ex,q»e:‘,. t’”‘eh A4 I, { [x,, A 1t

there is
lmllVF(ot,+z'M ~a, b, h)-VF(x,,A)l=0.

L L.

Since P has the Giteaux differential at x, ,

l{‘:’z I a)(o(.,::Lh)
These facts give the contradiction with (7).
Thus F has the bounded differential d VF(X,, A ) at
X, € E . By the Vajnberg theorem ([1],th.31)
d VF(x,,A ) must be linear in /o € E . Therefore
dVF(X,, M )=dF(x,, W)= F (X, )4 , where F’(x,) de-
notes the Fréchet derivative of F at X, € E .

Lepmg 3. Let E be a reflexive Banach space, F: E —
- E,, a mapping of E into E, such that there exists
VF (X, A ) in some neighbourhood U (X,) of X, € E .
Suppose that VF ( x, 4 ) is directionally continuous
in U(X,) for every (but fixed) o € E

= 0.

. Let
VF (x, , /A ) be strongly continuous in 4 € E . Let
t,—0, A, %0, h_ e K, , 2 >0 1imply

1 .
8)  tim Il [VF (X ettt by, b 0dtl; = 0.

Then F possesses the bounded differentialdVF(x,,4 )
at X%, € E . ‘

Proof. Let h,e 5, h e K, , t — 0 . we have
9) FXowty Ay )= F(X, Vo VF (X, b By )4+ 00 (X, T, A1 )
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Fxottah )= F(X )= VF (X tnh) + @ (X5, tn 8D -

Assume that ¢
m " a)(-x., J‘«) l = 0
t->0 t

is not uniform on S, . Then there exist € > 0, 0 <lt,l<
< ,,ib s, € Sy, such that

()] (xg ,t” hﬂ

)
2 € .
T I

(10) 1

Since E 1is a reflexive Banach space, passing to a subsequen—

ce { h"‘&b } , We may assume that h‘”hz_’ A . From (9)

we obtain
@ (Xo, tm h‘”! ) e Y= ( a)(‘xc,tw‘“h), e, )+
( t”*' ? T trn,*, g
+( F(Xa*tnhhwh)-r(“c“tuxh)) -G,.*)*
t,‘,‘.
+((VF (X0, M= VF(xpyPrmy 1), €my ),
vwhere €pn, € E; are any elements of E; o Let us choo-
se ¢, € E, such that
l ( G)(“a,twhhw*) e )'_ " w(‘x‘)t“'bh"'“)‘ ,
t".ﬁ, ) Ty t"“h
I-C,,,hllsz = 1
Hence

w(«x’; tﬂ-‘, h)u +

nﬁf’"_':"_&Lu.g I
ot

+ llaf’vp(x.f't,,bho-tt‘% e ), 1 = HIAEN
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+ uVF(-xo”h'm«h)" VF(X,,f‘\-)|| .

Since VF (-X, , ) s strongly continuous in h and in
view of (8), we have the contradiction with (10).
Theorem 4. Let E be a reflexive Banach space,
F: E - E, amapping of E into E, having the follo-
wing properties:
1) there exists the GAteaux differential VF(x, + X, 4 )
for X 6 K, , is directionally continuous in x € K,,.
(for any fixed M € E ) anda IVF(x,+x, )l & K
for every X € K, , £ e Kx, ,where K, 1is some
closed ball in E ,/VF(VO/(/ ” rr%hl&mfr'& Lels
2) BVF(X,+Xp My I — 0  whenever X, — X,
b Xy 0 .
Then F has the bounded differential & VF (X, , #2 )
at x, € E .

Proof. Suppose that the conditions of our theorem are
satisfied. Let t € < 0, 1 > . Then we have

B VF (X, +tyh +tt, (h,-h), hp-h)l =0

whenever | t, l< 1, t, — 0, 4, € Sy ,h,,,—‘{rh .

’ 3
Thus g Ct)= VE(x,+tphttt, (hy-h),h - h) are
continuous abstract functions on < 0,1),llg, (t)I & K ,
n% %, C(t) = 0 in (0, 1> . By the Lebesgue theorem
({103 ,chapt.III,§ 6.16)

1

om | [VF(+ tyett, (hy-h), by~ h)ll = 0 .

“ro
Thus the conditions of the lemma 3 are fulfilled and our

theorem is proved,



Corollary 3. Under the conditions of the theorem 4, let

there exist DF (X, , o ) . Then F possesses the
Fréchet derivative F’ (X, ) at x, € E .

11
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