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Commentationes Mathematicae Universitatis Carolinae
8,3(1967)
CONCERNING ENDOMORPHISMS COF FINITE ALGEBRA
J. SICHLER, Praha

Consider an (universal) algebra A on a finite set X
and the semigroup H(A) of all its endomorphisms. It was pro-
ved in [1) that not every transformation semigroup containing
the identity mapping is equal to H(A) for some A .

The aim of the present note is to prove the following:

If X has a cardinality greater than 4 and if every
permutation of X belongs to H(A) , then either H(A) comn-
sists exactly of all the permutations and all the constant
mappings, or H(A) is the full transformation semigroup on
X.

This result immediately implies a finite analogon of the
counterexample 2 in [1].

First, some notation and definitions.

As usually, an ordinal number o€ is defined as the set
of all the ordinals less than .

If X,Y are sets, we denote by x¥ the set of all the
mappings F : Y —» X . The cardinal number of the set
X will be denoted by | X |.

If k is an ordinal number and if X is a set, then
every mapping w : X" — X will be called a ee-ary al-
gebraic operation on X . @ 1is termed a projection on

M & X™, 1r
(Irenr )Yy e M) (wlg)) = glA)) ,

€ is termed a quasiprojection on M £ X*  if
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(Vg e MI(T A e®)w@)=glA) .

An algebra is a couple < X, 1> , where X is a set and .
is some set of operations on X . )
Denote by H ¢ X, 2> the set of all the endomorphisms of
the algebra ¢ X, 2> .

It is easy to see that if every w € (L) is a projection,
then H (X, 2> = X° .

As

(1) H<X, 5= HoX,{fwid>

wen

we will consider algebras with one operation only.
We write ( X, w > instead of ¢ X, {f@w} > .
For any set X , put

P-iFe X1 F 38 1-1 onto 7
C={FeXsl IFX)l = 13 .
If 2 is an ordinal, put
L afoeX®l IX-g@e) 223 ,
X={geX® ¢ is 1 -1 onto J -
If [X|=6 =~ m . is finite, put
[k, m-k1={6e X 1(3g, h)(grh, 6(X)={g, A},
l6'@@)l = &1}
(h,m - R)={fge X" (Ja, & )(a +b,gn)={a,b},
lg™@a) = &)}

for any positive integer Ao € -+ .

”n
2
Lemma 1. Let ( X . @ > be an algebra, I X| > 2 ,
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P s HCX,w> . Then € s H<X, @) .

Proof. Let w: X — X . For any X € X 1let
¢ € X besuchthat ¢ (®) = {xF . We define
FeXf by F(xXx)=w(gp, ). Forany Pe P we have
Fe P=PoF sothat (as |X| > 2 ) o (¥x)=
=F(x)=X forany x &€ X , This is equivalent with the

gssertion of the lemma.

Lemma 2. Let ( X, @ > be an algebra, | X | > 1 fi-
nite. Let P s H<C X, w), H<X, @ >n (X-(PueN + ¢ -

Then there is a G &€ H<C X, w > such that |G (X))l = 2 .
Progf. Let Fe H<X,@ Y n (X5 (PuC)), F(X)={a,,.., A}

Put Ay = Fla;) (42 4,..,2). e IF(X)I< m , the-
rearean 1, € {1, ..., £ } and @, & € A; such that
a + 4. There exists a P € J° such that P(a,,-a ymaQ,
Pas)=L, Pla;)e A; forany i 4 1, i & 1, .
Evidently, |[(Fo Pe F) (X))l = IF(X)I=1,FePoFe HC X, x> -
The conclusion follows by induction.

Lemmg 3. Let ¢ X, @ >  be an algebra,a):X‘—-b X,
Ps HSCX,w>. Then @ 1is a quasiprojection on % and
a projectionon X .

The proof is easy.
Remark. If w: X2 — X, IXl & 4, P H<(X, @ >
then < 1is a projection on X2 .

Lemma 4. Let ¢ X, < > be an algebra, | X| = m ,
w3 X*— X, Then

a)If Gelk,n-R1{GIuPgH(X,w>, then
is a projection on KX u (k,m-t), [he,m-bls H(X, ).
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B)Ir LA, m-fels HCX,w) , then
Pa HX,w) .

eIt L4, m=-418 HCX,cw ), then @ 1s
a quasiprojection on X° ,

The proof is obvious.

Lepmg 5. Let ¢ X, w > be an algebra, | X\ = 7,
w: X — X.

It (h,m-AR])l & HS X, @w> , then @ 1is
a projection on

Xo U (L,m-t).

Progf. Let £ > R, 9ed,m-2), S(mI={a,&},
lg'@a)l= £ . Let ¥ & X™ be arbitrary but fixed such
that

Y 1is one-to-one on g""(a) ’

W(<) & & whenever < € ¢g'(a) ,

Yit) = 4 whenever iem-¢o'(a)
As 1 & & and L <m-4 ,thereisan Felhk, m-Kk]
such that F (¥ (€)= a foranyi € ¢ '(a), F(4)= & .
torbaqvauch F we have Foe ¥ = ¢
Forany 1 s q"!a ) such that |1I | = & define a mapping
Gy € xX as follows:

3) { G(¥(iN=a 1t iel,
G (x) = & otherwise .
Evidently, G € [de, m -h], G o ¥V € (b, m-h) -
By lemmas 3 and 4, there is an » 6 m such that
w(x)= X (h) forany X € (A, m- k) .
We shall distinguish two cases.
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I. A~ e q" (a). Let us take a Gp (see (3)) with s € 1.
Since Gy o ¥ € (h,m-4k) and G 6 H( X, @,
we obtain Gy (w (¥))= @ . Thus, w (¥) = ¥ (i) for
some i € " (a). On the other hand, cw (@)= W (Fo ¥)m
=F(w(¥N=(L). A8 » € gp"(a-), we have ¢ (A) =
=aa = ¢ (1) .
1. » € m - 9"4(4) . @ 1is a quasiprojection on{¥7j.
(By lemma 4 for Ak = 1; if Jr,>4,thehm.-£ = 3
and the assertion follows from lemms 3.) Consequently, « 1is
a Juasiprojection also on {¢ § - Let us suppose that
@ ()% G(b), dee. that @ (¢) = @ . Then @ (¥)=
=Y (i) forsome i € ' (a) . Take a G; with < €
€1l. Ten w (G oy) = G, (@ (¥))=a ; on the other
hand, G, « ¥ € (h, m -hR), sothat w (G » ¥) =
« G (V(H)=G (&) = &, This ie a contradiction.
Lommg 6. Let IX1=5,w: X2 X, [h,5-RISHX,w)

for some k . Then <& 1is a quasiprojection on X5 o

m. By lemma ¢, it suffices to prove this for the ca-
se k=2 , by lemma 3, it suffices to prove the assertion for
g’eX‘ such that I9(5‘)l- 4 Thus, let fa § = X -
- g (5),let ym)=q(m) (m % m) and let cw (7)) = (H)
forany mr e X v (2, 3) .

We shall distinguish two cases.
I, t & A =) p(t) &+ & (H») . Let us define a mapping
F e XX as follows: Flogm))= Fla)wa, F(x) = ¢(»)
otherwise. Evidently Fe [ 2,3], Fecp € (2,3), F( (p ) =
=W (Focp)eFlcp(s -gp®)by lemma 4. Thus, @ (p) @ .
II‘. m=5h, Gim) = FCHr) . Let {4, 4,, 443 =
eS-{m,m}. Put 6(@a)= G(x(1,)) = G(p (%)) =
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=a, Glgm))= GcGlg(i,) = gm).

Evidently Ge[2,3]1, Gog € (2,3) ., If w(y)=~ @ >
then a= G(a)e G(@w ()= (Ge )= Glp(h))= G lplm )= plm),

which is a contradiction.

Lempa 7. Let m & 5, m 224k, kR >4 > 0. Then
there are m, > 0, m, > 0 such that £ + 2m, + M, =
=m Lrm, =k, m + m, =m -4  Moreover, if m > 5,
then m, & 2 or L+ m, &2 4 .

Proof. Put my = de-L, my,=m + £ -2k .

Lemma 8. Let < X, @ ) be an algebra, let [X| =
-m 2 5, W X" X .
If [k,m-RIs H(X,cw > , then @ 1s a projection
on
Hou,Y (£, m-2) .

Proof. Let k> £ >0, ge (L{,m-L), gm) =

={a,2}, lg'@l)=2, X={a,a,,.., a,., }-

Let n; and n, be the numbers from lemma 7. Let Agy Ay

Aysm-g'(a) be aisjoint sets with 1A, | = |A, |= m

IA | = m, . Wehave AUA UA = m-g'(a) .

As m & 5, we can define ¥ € X™  as follows:
Y(iY=a if i € v "¢ca),
Y(ire=a; it i € A, j=4,2,3.

Fa; =8 12 4 € {1,...,m -k} ;
F(x) = a otherwise.
Evidently Fe ¥ = ¢ -

As k & 2, m-4k > 2 , then there are mappings )
G, elk,m-AJ suchthat G (@)= G, (@) =G (a,)=
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=G—2(a,z)-a,, G:,(w,)- Gl(a?). G:,(a?_)- G‘;L(a,,,)- 4.

Obviously, G, « ¥, G o ¥ € (h, m - 4 ).

Lemmas 7, 3 and 6 yield that <« 1is a quasiprojection
on {¥} . By lemma 4 and 6ur assumption, < (%) = Z (A)
forany 3 € X v(kR,m-4).

Consider two cases.
I.It e g'(a), thnG(W(¥)a W(G;o ¥) =
=G (¥wN=G;(a)=a, As @ is a quasiprojection on{¥J,
we have <o (¥) = @ . Further, @ ()= @ (Fe ¥) =
=Flw)=Fla)=a.A8 » € ¢-'Ca ) , we obtain
w () = plHp) .
IL.let pem -~ 7'(a) . It » e A, U Ay , then
G (W (¥ = w(Ge ¥)= G(V(LrN=G (@,) =& .
As @ 1is a quasiprojectionon {¥} , then w(¥) =~ @,
or @ (V)= a, ., Inbothcases wW ()= L= g (») .

Ir » e A, , We uss G, similarly.

Lemms 9. Let (X, @) be an algebra, | X| = m 2
25 w: X" X . Lt Ps H(X, w0 > . 1f
HCX, @Y n (X*~(Pu g e ¢ , then H< X, > = X~
Progf. By lemma 2 and lemma 4,(fe,m-b]l & H< X, @)

holds for some k . Lemmas 4, 5, 8 yield that @ is & pro-
Je‘ction on X v g (L, m - 2). Ve shall prove first
that < is a quasiprojection on X . By lemma 3 it suffi-
ces to prove this for ¢ € X™ such thatlgm)i=m-1.
Let fa} = X -c(m) , let, for any¥e X v L‘J(l,rn-l),
W(Y¥) = ¥Y(») hold. The case k =1 is proved in lemma
4. et R > 1, w(cp) = a . Then there 48 an F €
€Lk, m -4l such that F(¢ (AN)=g»), F(a) = a -
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ks & > 1 then Feqg e (£, m-4L) for some
L . Ve obtain w (Fecp) = Flp () =p(B). Flaw(p)=Fla)a,
on the other hand, however F € H{ X, @ > , which is a
contradiction.

Let L € X7, IXx(m)] §m -1, let & & 2 (m).
I.Let | X - X (m)| & & - 1 ., Then there is an F €
el o, m- 4] suchthat F(X (AN = X (AH) and

CF(X (LW =& for X (i) % x (») . There is

‘F o x € (L,m~-4L) for some £ . We obtain

Flew (XN= e (Feo X)=mF(X(A)) = X (4). As & 1is a qua-
siprojection, @ () = % (AH) .

II. et IX - X (m)) <« R -1, Thenlxm)l om-A.
Forany N 8 X (m) with IN| = m-4¢ let us defi-

ne & mapping F, € xX as follows:
Fy (X)= X(5) i x 6 N,
fy (X) = & otherwise.

Evidently, L € [ 4, m-R] . Ifa(X)= x(m)+(»),
then there is an N & X (M ) such that IN|/=m - &,
Xm)eN, X(4) ¢ N. Then &= F, (3(60= @ (F o 7) ,
since Lo x € (£, m - £ ) for some £ ; on the
other hand, WCFio X)) K (W (X N= K, (X (m M = 3 (»),
which is a contradiction.

Lemps 10. Let { X, > be anelgebra,a):xu—& X,
IX| = o . Then there are operations 1, ( € N)
such that

a) Ny X¥— X,

) HCX,w>= HCX, {02y | & 6 NI> .

Progf. I. Let 18| > o, Put N={P € o™ 1390 =
weax, Nyp=dgeX®1(3ave XD (= e )}
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Porany & € N define 0, : X*c— X by .O.‘_(W)-
= (Yo Q ).
The evident relation X*= U Ny and a direct

computation prove our assertion.
II. The case of | 8&!| £ o« 48 trivial.

Theorem ). Let ¢ X, fL > be a finite algebra such
that # & H< X , 4L > . Then the following assertions
hold:

I.If IX1= 2 , theneither H< X, >= P or
HSX, 2> = xX

II. If | X| = 4 , then there are three poasibilit:les‘

1) H<X, 2> = Pu g ,
2) HS X, > = XX-74,31 ,
3) H<X,n>=x*,

III. If /X1 =3 or IX| 2 5 , then either

HCX,L>=Pug or HCX,0>=Xx",

Proof. According to (1) and lemma 10 we can admit an ar-
bitrary set L of operations on X .
I, 1is trivial.
II. Let us define T : X — X as follows:

Mg)=a if{faj=sX-qg(3), T@)= g (0) 1if

Pe1) = p(2),T(p) = P (1) If (0= p(2) ,
TCcp) = gC2) if @ (0) = ¢ (1) . We see by di-
rect computation that this is an example for the case 2), The-
re are no other cases except of 1),2),3) (lemmas 1, 4, 5).
IITI. The case | X| = 3 is trivial, the case | X| & 5
follows from lemma 9.

Notation. For any F € XX let us denote by I
its partition. We use the following notation: F < G
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indicates 7. 2 7 amd F (X) € G (X} . The
relation
F < G & G = F

is an equivalence on xX , the classes of which are ¥ =
classes of the semigroup X (of.l21). Hence, the relation =3
induces a partial ordering £ on the set of all the ¢ =
classes of XX . If H ds an ¥ -class, put

L(H)={UK | K is an ¥ =-class, K # H 7,

I(H)= £(X) (£ e H).

Let us denote by <, the set of all the C ¢ ¢

such that C (X) § I (H) .

As an immediate corrolary of the Theorem 1 we obtain
Theorem 2. Let { X, fL > be an algebra, H € x*
sn HH -class such that I (H) is finite and II(H)I=3
or [I(H)I & 5 . Let H € HKX, L > . Then
a) if H contains no idempotent, then
(4) LC(H) €8 H<X, D
b) 4f H contains an idempotent, then either (4) or
HEX, >N L(H) = Hu €, -
I thank Z. Hedrlin and A. Pultr for the suggestion of
the problem and for much valuable advice.
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