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Commentationes Mathematicae Universitatis Carolimae
8,3 (1967)

DECOMPOSITION OF METRIC SPACES INTO NOWHERE DENSE SETS
Petr STEPANEK, Petr VOPENKA, Praha

The method which will be described in this paper is ba=
sed on the results achieved by means of models of the set
theory, especially of the V -models (see [2]). The funda-
mental parameters of & V -model are a complete Boolean al-
gebra B and a ultrafilter z on B and special properties
of the model V (B, x ) are determined by the choice of a
suitable algebra B . Conversely, some propositions of the
set theory have scmwe consequences in the theory of Boolean
algebras.

We shall use some concepts introduced in [2] and we
shall apply the propositions concerning complete Boolean al-
gebras on topological spaces. It enables us to prove a theo-
rem about decomposition of certain types of metric spaces
and uniform spaces into an increasing sequence < nowhere
dense sets. We shall show that the solution of an analogous

general problem depends on continuum hypothesis.

§ 1. Preliminaries
1.1 Definition. Let 2@ be a system of seta. We define

Ex @)= (Y y)lixeal yeal x+y)rxny=0)
1,2 Definition. Let (P , = > be a topological space,
o c P. We define Reg o = Int (7). We say that o~
is a regular open set, if Reg o = o .
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1,3 Lepma. Let (P, T > be a topological space, .& c
Cc T systen of open sets such that the following condi-
tions are satisfied:

(1) Ex (&) ,

2) Uum =P,

“e b

Then the system Reg & = {Reg «; s e & } satisfies al-
so conditions (1),(2).
1,4 Lemmg. Let ( P, T > be & topological space and sys-
tem { Ay3 A € I} satisfy conditions (1),(2) in lemma
1.3. Let, for every A € L, F c¢ A, be a closed and
nowhere dense set in the subspace ( A, , = > . If we put
F-P-kIA_A then T=F'ukJEt is closed
and a nowhere dense set in (P, © > .

Proof. It can be easily seen that T 1is a closed set.
We shall prove that the set P - T is dense. Let O+ 0°'c P
be an open set. By (2), there is A, € I such that
on A,,o = o * 0 . It holds evidently,

(P-Ting =L P-(Fuy a)ante.q.'n(P—ﬁ')¢0.

Every open set o =+ 0 has the non-empty intersection
with the set P = T .

It follows that P - T is dense.

1,5 Propogition. Let ( P 5 T 7 be a topological space.
The set Reg T = {Reg u; w4 € T § forms a complete
Boolean algebra (compare [1]).

§ 2. The Suslin number
2,1 Definitiop. Let ( P, = > . be a topological space.
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We define
@l Pr)=min (n;card(a)&13a (Ex(a)g&acTéeardasar)

we say that ( P, © > is a saturated topological space if
the following condition is satisfied: 0+ 4L € T —
i, T?P= (P, Ty .
2,2 Lemma. Let (P, ) be a topological space and let
A, ¢ T satisfy the following conditions:
(a) A (0e &) ,

W) (vI(vert &ved)Iuluebbuwcyl.

Then there exists & ¢ & such that (1) E x (4&; ) ,
(2)“%)&,4» = P,

Proof. Let A be a choice class. For every ordinal num=-
ber o , we define the sets a, as follows: a, = A'.Gy

%= NG, , where G =XynThInt(P-Ua,).

Obviously, there is @ = 0 for o« 2 w <P, T > . Put
2 = {a,; &« < <P, T> . It can be easily verified
that 2; satisfies conditions (1) and (2).

2,3 Lemma, Let { P, = > be a topological space. Then the-
re exists a system & ¢ T such that

1) Excce) ,

@ G w =P,

“ e

3) (uIlmwer > S, & ) is saturated].
Proof. Let & c =T be the system of all non-empty
saturated sets in ( P, © > . As the condition
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Wi [w,ver & ucr) = wiu,) £ (v, 5]
is satisfied, it is obvious that some set 2~ € & is con-
tained in each Bet w e * & w«w + 0 (at least an iso-
lated point). Now the assertion follows immediately from 2.2.
2,4 Th ( . Let ( P, > Dbe a topological
space. Then (w <P, v is a regular cardinal number.
Proof. First, let ( P, 2= > be a saturated space
rendlet w <P, T )= K, . Let{d,,}r‘% be
an increasing sequence of cardinal numbers confinal with
such that d, € R, for every ¥ € aj, and &, € al -
Obviously, there exists a system & = {u,r} 7e wp such
that the following condition is satisfied: Z;c T & 1(0e )&
& Ex (&), For every Aby 4 the equalitycedu,,? )= ¥,
holds. Thus, there exists a system ;. c T such that
E.x(lrr) and md,(,b:r)=df. Put;@’:w_%)‘%»b’r-
It holds Ex(®), & c T and card & = R, and
that is a contradiction. It follows that o is a regular
cardinal number. )

Further, let ( P, © ) be an arbitrary topological
space. According to 2.3, there exists a system .&; ¢ T sa-
tiefying (1),(2),(3).

Put card £y =R, < (P, =) and xamp(u,—w.
¥ Ry > R, them w (P, ¥d=R,,,, l.e. a regulr car-
dinal.

If Ry > Ry and R o<, T) for some « e £ ,
.then & < P, Ty = Kias {4, 7T ) 18 a regular cardinal aa
it has been already proved.

Let us suppose that the sequence { a¢ <4t ,? >} has not
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the greatest element. Let us construct the increasing sequen-

ce of cardinal numbers for A € Gy such that *m -

=@, , Ty and that X, =4§’n HRe, - To every
-RMA_ we can construct a system &, c T in the

set w, such that E x (&, ) andeard (&)= e, .
Put & = U &3 . Evidently, eard & = ¥, . It holds
@ <P,y > ¥, . If there were e <P, 2> > & ,,,

there would have to exist a system £~ ¢ & such that
coxcdl & = R,.,, 8nd EXx (&) = a contradiction.
Thus w <P, > = &, , e u <P, T ) 1is aregu- .

lar cardinal.

2,5 Lemmg. Let { P, > be a regular topological space.
Then <u,<P,’t‘>-l=8°.

Proof. Let X, € P  be a non-isolated point. Let
X4 # X, . Then there exists a closed neighbourhoad V, of
the point X, such that x, € P~V = U, . Fwther,
there exists X, # X, , X, €6 Jn (V, ) and a closed
neighbourhood V,  of the point X, such thatx, € P-, .
Put U, = Int (V,)A(P-V, ). In this way we can construct
the sets U, = Int (V, ) A (P-V,) forevery m < o), .
Denote U = {U, ;m<w, . Obviously, U c ¥, Ex(U)
and eaxd U = X, - a contradiction. Thus the points
of the space ( P, T >  are isolated. If eard P < &, ,
then & ( P,z )= &, does not hold. If card P = xR
then {P,x?= 81 - a contradiction.

Remark. The statement of lemma 2.5 holds for every to-
pological space. As we shall deal with the uniform apéce, we

o 7
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do not prove it in full generality .

226 Definition. Let (P, = > be a topological space. We
define X < P, T > = min (card & ), where b i3 a base
for the topology '8 .

2.7 Proposition. Let { P, © > be a metric space. Then
@ <P, T Y 1is an isolated cardinal number. If ¥ (¢ P,z >=

txx‘, then M(P,'v>=x‘+4 4

Proof. Let (@ be a metric, generating the topology
T.Let ww <P x> > X,. Forevery m € o, , let
A"z {AT ,1 € 1, } be a system of non-empty sets such

that (a) E x (A™) ,

() Ac 7 ,

(c) a4 el,— (X)X, eAr>plx,y)<t],

For every m < CJ, ald A € I, let X, e A,
be a chosen point., Put

T'{‘xri m<a,, e l“}:ﬁu'md(lu)iﬁié) Ba -

Obviously, caxd T = B < o < P, > . We shall show
that T is a dense set in P . Let 0 = occ P be an ar-
bitrary open set. Then there exists X, € 0, m < &),
such that U* (X,Y € o ,  where x e Ug (x,)=

=EE(x,X,) < 'gi « Acoording to (d) there exists A, €
€1, ~such that A n Ug (Xx,) # 0 . It can be

easily seen that A'™ c Ug (x,) . Thus x"e o,
4 4,

According to the well known theorem on metric spaces the
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following inequality holds:

R =P, > bdcard T B<au<P2z>.
If there were (w < P, = > > X, ., , then a system
£ ¢ ®  would exist such that caxd & = R, .,
Ex (&) . It is impossible and thus e < P, 2 >= X, -

?

Remark. If ( P, = > is a separable metric space
then w <P, 2 >=x,. 12 (P, 7> is a non-se-
parable metric space, then < < P> =&, > KR, -

§ 3. The (oc,(3) -system on the Boolean
algebra
3s1 Definition. Let B be a complete Boolean algebra, 2 an
ultrafilter on B . We say that a system A¢F= {w (7;,0°) ;
yew, ,de @} 18 (a,B) -systemon B with res-
pect to 2z 1if the following conditions are satisfied: There
s a & € z such that

(1) (Fea, &Gi+9,)— w (g, ) Aw(y;, )= 0,

1) (Pew &) v>wr,d))Aw,d)=0,

(2) f‘\gn w (o) = for every o € Gy

4

(2.) 7‘\4‘10' (,0")= aw for every o€ ay -

We say that A¢/, isas (x,B3) -systemon B 1if A‘,s
satisfies these conditions with respect to all ultrafilters
s on B,

Remark. The notion of the (o, /3 ) -system on the Boo-
lean algebra with respect to an ultrafilter was introduced in
[2]. From the definition it is not clear why we speak about
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an ultrafilter 2z instead of an el'ement M E X whose
existence is required. It can be easily seen that the above
defined ( or, 3 ) -system has the properties (2),(2°)
with respect to all ultrafilters if and only if .« = 1,
1.6 AL is the greatest element of the Boolean algebra
B. (oc,3)-system on B with respect to an ultrafilter
z has the important property, which was proved in [2]:

If there exists an ( oc, 3 ) -system on the Boolean
algebra B with respect to an ultrafilter x and 4, O
are arbitrary ordinal numbers such that oc € 7 £ 0¥ £ 8
then there exists an (", 07 ) -system on B with respect
to z , as well,

The elements AL, v € X which correspond to the
both systems according to the definition can be different.
We shall prove the similar assertion for ( oc, /3 ) -systems,
i.e. we ghall prove that if there exists an (or, 3) -sys-
tem on B with respect to & = 1 then for an arbitra-
ry pair of ordinal numbers Y, o such that « £ o £

€ " & 3 there exists an (7, 0" ) -system with res-
pect to w = 1. .
32 lemma. Let B be a complete Boolean algebra of all re-
gular open sets of the space < P, ¥ > . Let us suppose
thet there exists an (oc, ) -system on B . Then for
every pair of ordinal numbers 79, O  such that « <
&£y £€d£ 3 there exists a (7,0 ) -system on B .

Proof. Let 0 # oo € = . Let z be an ultrafil-
ter generated by Reg 0 . On B, there exists an

(«,3) -system with respect to sz . According to (2) ‘there
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exist « € =z amda (y,0")-systen A, , such

that “‘\‘/,d'ur(.n.,(u)su &\, w (A, ) = i .

Put o=t no %0, A;,d.- {fw(r,mdnog; A ECYy, wea, ]

1 - A w
Obviously, A,. C T  and the sets f '= o _m-yw,.w 1, )

o
for new,, H'B = o;-ﬁ%rw(zt,(u) for @ € o

are closed and nowhere dense in O; . We have shown that in
every non-empty open set o there exist o7 # 0 and
A'Yd_ having the properties of the ( 7, o™) -system. (i)
According to 2.2 there exists a system &, c such
that E > (£&4), F= P -.Y, «  1s a closed nowrere
dense set and every « € £ satisfies (i). For every
moe by ,let AL ={wa,u) e, uea,.d bea
corresponding ( y, o) -system. Put A,,.d.= {fw, ) ;

AE@, , M € $ , where W(A,(cc)sug%w“(.&,ﬂ)

for every A € Wy, (@ € &y o (1),(17) can be easily
verified. According to the definition of A’a’d’ it can be
immediatel y seen that

P U wla, s F‘L%E“ and P-#%r“’(ﬁ:@kﬁ-’“}é”q.-

l&)r

According to l.4 these sete are closed and nowhere dense for
every A € c.)r sy (& € @, . According to 1.3 Reg Ay, =
= {Regw (A, )} 1s the (7,0 ) -eystem satisfying
the conditions of this lemma.

Remark. In the génertl theory of V ~models the exis~
tence of an (o, /3) ~system on a complete Boolean algebra
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B with respect to the ultrafilter 2z is equivalent to the
existence of a one-to-one mapping of ordinal number cu)l on-
to w';" in model V( B,z ) . From this point of view,
lemma: 3.2 45 only a translation of the well known Cantor-
Bernstein theorem. ‘
3.3 Proposition. Let B be an algebra of all regular open
sets on ( P, ¥ > . Let there exist an (a, /3) -system on
. B, where cJ, is a regular ordinal and o« < 3 . Then
there exists a system { F, i, o s  such that the following
conditions are satisfied:

(1) 4 e, —» Fy 1s a closed nowhere den-

se set,

(2) «w, < Az—rﬁ c F,

1 2 2

3) P= U F, .

Accdn

Proof. Let A‘ﬁ-{w(a,po);neq‘, (« €a; ¢t bean

(e, 3)=system on B . Put _Cd,:Y‘LJ%

arbitrary X e P, define T (Xx) = uucd{-f;xecfi.

w (,0°) . For

If there were T (X ) > R, then there would exist or-
dinal numbers §1 & fz , Y € W such that
x€wy,§)n w(y §) =-acontradiction. Thus,

r(x) £ ¥, . Put ﬁ:P—wLéJfC; for U< @y -
A system { F },, @y is an increasing sequence of
closed and nowhere dense sets., Let x € P be an arbit-

' o Let oc (Xx)= . Th ;
rary point. Le )= f:’é’;’ 13 ere is o (X ) < @,

because @, is a regular ordinal. Thus, X € 4ywﬂfi .

3.4 Lempa. Let ¢ P, T % be a saturated metric space. Let
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A <Pr>= R.,, - Let B be a complete Boolean
algebra of all regular open sets in P . Then there exists
a (0,cc) -systemon B .

Proof. Let (A41 )41 ca c T be a system such

that the following conditions are satisfied:

(a) A.;t‘, #= 0 for every ., € G

(b) E"((AA,)A,sq‘) ,

(e) .‘SJ A",, is dense in P ,

(@) (x)y)Ix, e Ay >p(X,4)<1] for every A, € Q).
For every A, € G let (A41_Az)4‘e(%_“4” be a
system such that A, , # 0, Aya,€ Ty EX(CAL 4 24 ¢ - 14,1 ))
and U A, , is dense in A, . Analogously for

* 1 %2 2

every one-to-one sequence ./ _,..., ./t” € o, let

1 2
(A4,,,, A s ) 4., € (a) - {4,,... 4,3)be a disjoint system of

open sets such that (X )y )[x,y e A,,'q“_ 4.-..4_#50(“’9'7<4T447 ]

and UA . 4, 1edensein A, . , . Put

mnidq m

mn

“’(””d"7’4,,‘¥a- A,t,.._ “ for m<ca,, O € Do -

Consider the following implications:
W) m, & my— wim,,&)n w (m,,0") =0,

Q) o+ — wim,L)nwm,d)= 0,
) m <« &,— Ywm, o) is dense in P,

(2°) ffea— Y wim, ") is dense in P.
It can be shown eagily that (1),(1°),(2) are true., We shall
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show that (2°) 1s also true. Let 0 #& O € T . Thus the-

me exist X, € ¢ and m < &, such that %z (X,)=
={Xx; Px,%X,)< % } € o . If there were not A,tr,,,,mc
c %k (x,) for any set A,{,,,, Aym then

o (X,) N A41__.4”w= 0 forall A, Aym and

that is impossible. Let Ay ... 4 c o . If Ik,
for every 4 = 1,2,..., 4m , then Abyoi typy € O

Thus Uwm,d)no % (0 for everyorw 0, e,
m <dp
ie. Y w((m,d") 1isdense in <P, 2 > . According

to 1.3 the system { Reg w(m ,0") sm<w,,deay, } 15 a

( 0,) -systemon B .
3.5 Definitjon. We say that the topological space { P, = >
is nowhere separable if this condition is satisfied:
0+ 0 e v — (o,% Y is not separable.

3,6 Theorem. Let (P, ® >  be a nowhere separable metric
space. Then there exists a system { F {1, @, such that
(1) A e w, — Fa is a closed nowhere dense

set,

(2 A, <un, — F e K, ,

3) P= YR -

Proof. According to 2.3, there exists .- ¢ © such

thet E x (&) and“lr}’u = P

, for every wu € &

the subspace < 4, T > 1is saturated. According to 2.7
the inequality e (a0, T = R,,, > R, holds for
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svery 4L € & . By 3.4, there existe a ( (0, ) -system.
By 3.2 there exists also a ( 0, 1) -gystem

Ay = {uw, (m, 0 ym<ay,,dea, §.put w(y,d)= U w (7,07)

for every ¥ < @), 0 € @, . Similarly as in the proof of
3.2, we shall verify that the system { Reqg w (95,07) ;
N¥<a,, e, } 1saa (0,1)-system on the Boolean
algebra of all r»egular open seta in < P, = > . The statement
follows immediately from 3.3.
3.7 Lemmg. A linear topological space ( P, = > is satura—
ted. '
Proof. Let U c P  be a non-empty open saturated
“set. Then there exist X, & P and an open neighbourhood
V  of zeroin (P, >, such that X, + V. c U .
Thus Y is also saturated set and P =M<Li‘°m. V.. Ob-

viously « <V, T > & « <P, T > . If there were
P> >wlV,z> then there would exist m, such
that wdm,V,75% = @« < P, 2> - contradiction, be-
cause <u</n,V,'=>=(a.<V,"c').

3.8 Corollary. Let <P, ) be a metric linear space
which is not separable. Then there exists a a_ysten{f-;l Luw,
with properties (1),(2) and (3) from 3.6.

Remark. According to the above propositions, a metric
nowhere separable space 1s the union of an increasing sequen=
ce of R, nowhere dense sets. A separable metric space
consists of 2“' points. If continuum hypothesis f' = KR,
holds, then a separable metric space without isolated points
is the union of &,  nowhere dense sets. According to 2.3
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there exists the decomposition & of an arbitrary metric
space < P, > into saturated sets. Some subspaces

{a, &>, where « € £, are separable, the other ones
are nowhere separable. If continuum hypothesis holds the se=-
parable subspaces ¢ 4, = >  without isolated points are
the union of &, nowhere dense sets and the other ones
are even the union of an increasing sequence of X, nowhe=-
re dense sets. According to l.4 it can be easily seen that

' the whole space ¢ P, 2 >  without isolated points is the
union of the system (non necessary monotony) of &, now-
here dense sets. It can be easily seen that the separable
metric space without isolated points is not the union of in-
creasing sequence of &, closed nowhere dense sets. Let

T be a countable dense set in P , If there were P-“L_.éf-:‘

then there would exist an index 4,

such that T ¢ F,
- contradiction.

v If (P, ¥ > is in addition a complete metric spa~
ce, then according to the well known Baire’s theorem
(P, ¥ > 4is not the union of R, nowhere dense sets.
In this case { P, T 7  is the union exactly of &,
nowhere dense sets .

If the continu@ hypothesis does not hold, then the
situation is more complicated. In paper [ 4] there is construc-
ted a model of the set theory in which the continuum hypothe-
sis does not hold and the interval I = (0, 1>  is not
the union. of less than 2%° nowhere dense sets. In an
‘analogous WIIJ‘GI above it can be proved that a metric space
without the isolated points is always the union of 2% now-

here dense sets.



The deseribed method can be extended also to certain
uniform spaces.
3.9 Definition. Let { P, # > be a uniform space. We de-
fine w (%) = min (earxd (U)) , where 2%  is
a base of the filter of neighbourhoods of the diagonal

A c¢ P x P, which generates the structure of the uni-

formity = .

x)
3,10 Propositiop. Let { P, = > be a saturated uniform

space, B a complete Boolean algebra of all :egular open
sets in P . Let R =@ ()< w<P, 25 =8, . Then
for every ¥, o such that oc = 9 = 0" < B3, there
exists & ( 9°,0") -aystem in B . ;
Broof. Let { VY ; § € @ } be a fundamental sys-
tem of neighbourhoods of A . Let V be a neighbourhood.
of the point X, € P . We say that V  is of order
§f € we if Y V¢ Vf is satisfied. We say that a
system of open sets A= fu,; 1€ 1.7 c is of

order ¢ in an open set A if Ex(A.), 4‘%,«.4 = A

holde and for every A € I,  there exists X, such that
“y is a neighbourhood of order o~ of the poimt X L, ¢
Put

P /rx.';n(oaadCAd.)) ) x,,ef};x,.f <cm <P .

For every 7o such that oo « 9 & 7% < /3 there
exist systems A, of all orders in P such that

caxcdd Ay = &R, . Using the transfinite induction we de-
fine the sets Ay .., .4, - If € 1is an isolated or-
dinal number € = €, + 1, then {A, agh Ao * Ay

») /«/a-f{}
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for ¥ < € , A; € @) } will denote a system of order €
in the set AA“,,, ‘e, *
If € is a limit ordinal number and ct = {4, §,c ¢

is a one-to-one sequence of ordinal numbers i, € &yp

put A, = Maps Ay uy  * It A, + 0 , then
L AL ugs 4 & 4y far » € €, A, 6 @) jdenoctes

a aystem of order £ for the set A, -
For € € We, @ € Wy put w (e, &) =

‘4$L-Jﬂ- A,{,,., Ag * It can be easily seen that

(1) e, % € »wig,m)nwie,, )= 0,
(1) @y % @, —» W (€, @y )0 W (€, ) = g,

2) ¢“_LJ w (e, @) is dense for every € € @
hold.

It remains to verify (2°), i.e. that Ywe, ) 18 den

se in P for every w € &, . Let 0 # o ¢ T . Then
there exist df € «), and X, € P  suh that the neigh-
bourhood U  defined by U x {X, 3= Vo n {Px{x, ]}
satisfies U c 0", Let O] € @x be such an ordinal num-
ber that \:a/d; c V,,; . Let us take a neighbourhood U,

of the point X, of order J, . Obviously, there exists

1
aset Ay A such that AA,--.A,; AU #» 0. Then
Uco, A . Th
AA.,... Ag © u Let xz € Ay, sy hen
(x,z)e\z,q thus z e U c o . If for any
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y % 0  there is not A, = ¢ then A.t.,....g;(u' e,

Thus o N L‘J wie, ) % 0 . We have constructed
an ( o, 9 ) -system on the algebra B , A‘? =
={Rgw(e, w); €€ @, €@ } -

The second part of the proposition follows from 3.2.

3.1% Proposition. Let ( P, = ?» be a uniform space,
w(T)= ], and let the following condition be satis-
fied:

O o0er— wio, > > Rg, g,

Then there exists a system { F, i““,_“" such that:
1) 4t ea,, — F is a closed nowhere den-

se get,

) a, <u, — K c R, »

3) UE = P.

Proof. Let & be the decomposition into saturated
sets such that E X (&) and U_H’u = P .  According

to 3.10, in every set there exists an (oa,oc + 1) -system.

Similarly as in the proof of 3.2 it is possible to construct

an (o, + 1) -system on the algebra B of all regular o-

pen sets. Now the statement follows from 3.3.

3212 Corollary. Let ( P, © ) be a linear topological spa-
ce guch that @ (0) = R, and w <P ) > Reyy

where < (0) is the least cardinality of the fundamental
system of neighbourhoods of zero in P . Then there exists a
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system {F §, ¢0,,, with properties (1),(2) and (3)
from 3.12.

Proof. Linear topological space is uniform and satura=-
ted. Evidently o (0) = @ (2 ) . The statement fol-
lows from 3.10 and 3.1l.
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