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Commentationes Mathematicae Universitatis Carolinae

8,3 (1967)

LINEAR DIFFERENTIAL EQUATIONS WITH NEWTON-INTEGRABLE
COEFFICIENTS

Otomsr HAJEK, Cleveland, Ohio, Karel KARTAK, Praha

Summary: Existence theorems (items 8,9 and 11) ad a uni-
city theorem (item 12) are given for the linear differential
equation x'= A(t)X + & (t) 4in m =-space under the as-
sumption that A(t) and A& (%) are Newton-integrable, i.e.,

are exact derivatives on an interval.

1., Introductjon. The classical notion of a solution of a
differential equation

(1.1) X'= f£(t, x)

with continuous right-hand side was generalized by Carathéodo-
ry [1] as follows. We say that an absolutely continuous func-
tion &  defined on an interval l=[7, v +ax), « >0,
is a solution of (1.1) iff

(1.2) PI(t) = £Ct, P (t)

a.e. on I . On setting ¢ (¥ )= §, we have ¢ (t) =
.§+_[:+'(s,q(s))d¢s ’ with the integration ta-
ken in the sense of Lebesgue.

In [3] it is shown that, in such situations, several in-
tegration processes more general than that of Lebesgue may be
used, thus providing a more complete theory. It is then natu-

ral to inquire into the usefulness, in this context, of
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another familiar integration process, namely that of Newton
“integration [4].

2. In what follows, m 1is a fixed positive integer, R"
denotes euclidean m -space, & = R’ . By the (%, x)-
space we mean AR™*' | the generic point of which may be
denoted as (t, x) or (t, Xy,.--5 X, ). For x =
= (Xyyerr Xy )E R” set Ix 1= mae (1x,1, ..., 1x,1) . For
any subset £ of the (t,x) -space, and any x € R™, we
denote D = {te R;(t,x)eD} , and similarly for

Db, finally, fwop, D= U{D“"; x € R™7 , and
similarly fuof, D = U{D?; te R} .

A real-valued function f with domain f = G  open
in R 1s said to be Newton-integrable, and we will write
# € X', iff there exists a function F  such that F'(¢) =
=f(t) forall t € G ; a similar definition will also
be assumed for R™ =valued functions, and for closed inter—
val domains [ 2, ©’], In the latter case, the number F (7% )-
-F () 1s called the Newton integral of f over [T, T'J,
and denoted by (./Y')/;_"*F . For convenience, the Lebesgue in-
tegral may be denoted by (& )j , and the set of Lebesgue
integrable functions by &£ .

Further, let ¢ be a real-valued function on an inter-
val 1= [®,v+x]. Wewrite ¢c € N, iffcge

on I for each contimuous ¢ : 1 — R . Evidently 4 ¢
c A,

3. Definition. Let +: D — R™ with & an
open subset of the (t, x) =-space. It will then be said
thata g: [, +a ] - R™ is an N -solutfon
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of the differential equation (1.1) iff (1.2) holds everywhe
re on [, + ot 1 (with one-sided derivatives at the end-
points).

Remark. Evidently this requirement is equivalent to
g(t)-g(7)+(f)£tf(5,¢(5)) forall telr, T+axl-

4¢ It would be most interesting to describe large clas-
ses of £ ‘s for which N =solutions always exist . In ana-
logy with the theory developed in [3] for, say, Perron inte-
gration, it seems natural to consider differential equations’
(1.1) such that

(4.1) for each X € quoj, &0, £ (-, x)e /' on 3"’“’;

; ' t,)
(4.2) for each t € fnoj, D, £(t,.) is continuous on D),
under some further boundedness conditions, e.g., that

(403) there exist m, M e & on g, &  such that
m(t) € f(t,x) €« M(t) for each (t,x)e D -
However, we do not have any existence result in this direc~
tion: the usual reasoning via the Schauder fixed-point theo-
rem fails here since it is not known whether, urder the con-
ditions exhibited, #(t, @ (t)) e NV for each conti-
nuous & . The present paper is then devoted to the special

case of linear equations.

5« In what follows, we shall be concerned with linear
differential equations of the form

(5.1) x' = A(t)x + L (t)
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under the assumption that the m >x m matrix A = (a; ;) '

and the m x 1 matrix & = (&; ) have

(502) a;; , & €N for 1 £ 4,7 €m

%
on a fixed closed interval I = [, T +o ]J. (This con-
forms to the general situation from Item 3 after extending A,
v,@r appropriately to some open interval containing I )

The first question is the existence problex: Given an
initial value § € R”, does there exist an A" -solution
of (5.1) on I such that @(z) = § . For this we have
the two results described in Items 8 and 11, The present nota-

tion and assumptions will be preserved.

6. Definitiop. A function @ : ] — R 1is called KN -
semibounded on I  iff there exists a function ¢: I — R

such that ¢ € A,, and

(6.1) either a (t) 2 ¢(t) for t el , ora(t) € c(t)
for t el .

In this case Q@ may be termedq A" -gemibounded by ¢ o
Similerly, an M >< m matrix A = (a; #) of func-

tions a;; on I ‘is called 4" -semibounded on I iff

there exists a matrix ( = (c;z);, m »=m , of func-

tions ¢, such that each a,.is N semibounded by c; .

7. Lempg. Let @ € N bpe N -semibounded on I
Then @ € A, -
Proof. Let a be A -semibounded by c y €86y

a » Cj;then a-¢ 0 anda-c € A. Let
g: 1= R be continuous, Now put E (+)= (N)[*(a-c);
r
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then E  non-decreases on I , so that the Riemann-Stiel-
tjes integral F (¢) = .[: gdE exists for each

t € E . Now it suffices to show that F/(t) = g (¢)(a (¢)-
-c(t)) for all t € I , since then the assertion follows
from ¢ ¢ € N, Indeed, we have e.g. for each 7 & t <

< = + o and each (small) A > 0

I | - 1 (F(t+h)-F(t)) =
TS L (ECt+m)-Ect) s g (F(t+

1 [tk maw -4 (E(t+h)=EE))
‘T»{ gdb < mak I R ’

thus completing the proaof.

8. Theorem. Consider (5.1) and an initial value § e R™,
and assume (5.2) and also
(8.1) each @, 1is Lebesgue integrable over I ;
(8.2) A is N -semibounded on I .
Then there exists an ' -solution & of (5.1) on I with
g(r) = € .

Broof. Put ¢, = f , and then, for each 7 = 0,1,..-
z t
¢ ~n
Now set (3 (¢) =('.:C)/; mae 55;'_4 l@p;Ct)] ; then by induc-
tion one easily obtains the estimate

| Gy (B) =0, (83| & &) mae g - 1 (Bce))® .

In particular, the series ¢ = ¢, + (¢ - )+ ... con-

verges uniformly on I . Hence and fram (8.3),
(8.4) g (t) = §+(3C)j:A9+(.Af)f:ﬁ—
“for all t € I ; and here, according to Lemma 7, (& ) nay
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be replaced by (.4 ) , concluding the proof.

9. In the authors’ opinion, it is an interesting open
. question whether condition (8.2), or even both (8.1),(8.2),
might be omitted entirely.

We prove that the first case occurs provided
(9.1) e £ AN .

It is then possible to write (8.4) in the form
¢ t
9.2 g(t)rs §+ (L) Ag+ (L) &

so that ¢ is absolutely continuous on I « Now it suf=-
fices toprove that a € £ A N, ¢ absolutely
continuous on I imly acp € N on I .

Pt F(t)e f*a , tel , adleG:lsR
be defined as G (t) = j:cy dF , with the irtegration

taken in the sense of Riemann—Stielt,jes. We prove that

(9.3) G'(t) =a(t)g(t), te 1 .

Fix t € I and put H(x)= F(x)-F(t)-(x-t)a(t) ,
xel. '

vy
Then 4‘”"9;:01, F=£""gde+a(t)f & .Now, it is easily

seen that, to prove (9.3), it is sufficient to show that

(9.4) L A-‘£**”9¢H =0 .

Using

Cateh t+h trh
(9.5) dH=[gHI"- Hda
[ e L TRy
the required result follows from H(t) = 0 and H(t) =
= tim WTH(t+n) = 0.
h>o
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10 On the other hand, for equations of a slightly more
special form , one can omit both (8.1) and (8.2), This con-
cerns equations (5.1) in 27 =-spaces with coefficient mat-

rix

(10.1) (
A, 0

where the displayed submatrices all have type m x m ; OT,
in another formulation, second-order equations in m =-space
of the form

(10,2) X" = A(t)x for te I .

The proof of the following theorem is based on a private com=
minication by J. Marik to one of the eufhors concerning the
case m =1=¢, m= 0.

11. Theorem. Consider (10,2) and initial values § , 7
in R™, and assume A € A", Then there exists an A" -
solution ¢ of (10,2) on I  withg(?)=§, ¢(2)=1% .

Proof. First set B(t) = (.A")_/":A for t € I ; sin-
ce B is continuous on 1 and B (2)= 0, one may
choose a J“ > 0  such that
(11.1) mac |1B(t) < = .

teCr,z+0] 30

Now define v, = 0 and, for < = 0,1,...

(A1.2) Yoy ()= BI(E+ [Ty ) e = [Py, .
T

Thus
t
Yipg (E) =y, (4) = B(t)j:cw,. - )= B (- Y,
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and therefore, using (11.,1) (with [ ... |} denoting maxi-
mainlr, T+d] ),

1
M, - W 6L 1w -wu, 1 I+ 55 1v- % 1=
2
- slw-%u, .

It follows that the sequence { Y $ converges uniformly in
‘[T, ¥ +d 1 ; let ¥ denote its limit. Then from (11.2)

t
(11.3) y@) =B (E+fy)en - [(By .

Pinally, set q(t)-§+4t‘y/ ; ‘then 9'--4; and
g”m.5’(t)(g+4*_w‘>+Bcf)ww-ea)v(t)-Amc,m

and also lgp('z:)-f, )=y (r)=B(x)§+7 =7 -

This establishes the existence of the required /' =-solution
at least on a subinterval Lz, ©* + 0] . Now, it is easy
to see that the solution may be extended over the whole inter-

val L ©, T + &« ] in the customary manner.

12, Theorem. Under the assumptions of Theorem 8, equa-
tion (5.1) has unicity of ' -aolutions to arbitrary initial
conditions.

Proof. As in all linear problems, it suffices to show
that if an N -solution ¢ of

(12.1) x' = A(t)x
has ¢ (z)= 0, then @ = 0  in some neighborhood of
7 . Consider the "fundamental" solution Y of the matrix
eqyation

Y= = AT(t)Y, Y(t)=E
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(where AT  1is the frampoae of A and E the unit mat-
rix). _
Since — AT satisfies with A  the assumptions of Theo-
rem 8, such a solution Y indeed exists.
Now,
(YTg)Y = - (Y A g+ YT (Ag)
so that
(12.2) YT (t) g (t) = comnt =Y(x)rgt)=0.

Also, Y (%) is continuous, and non-singular at t = T ,
so that it remains non-singular on [ T, + 0] for small
¢o° > 0 , wherewpon (12.2) yields ¢ = () near T .

13. Actually, Theorem 12 is a rather special case of &
result, asserting that existence of solutions (for "negative
time") of the adjoint problem implies unicity (for "positive
time") of the original linear problem [2]. The same result
then applies to the situation treated in Theorem 11l; it suf-
fices to observe that the adjoint equation to that determined
by (10.1) has coefficient matrix \

-E, O
and this is again reducible to the form (10.2).
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