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Commentationes Mathematicae Universitatis Carolinae
8,2 (1967)

APPROXIMATE SOLUTIONS OF EQUATIONS IN BANACH SPACES BY THE
NEWTON ITERAT IVE METHOD.
PART 1, GENERAL THEOREMS .
Zdenka GROSCHAFTOVA, Praha .
§ 1.

Let X be a Banach space, {1 ¢ X an open set, ¢ a
nonlinear cperator on . and { @, 4n., & Sequence of non-
linear operators which in some sense approximate ¢ . The
main problem studied in this paper is the following one: if
there converges the Newton iterative process for the equation
1) pu = 0,

under which assumptions the same takes place for the equations
(2) émM - 0 ,

mbeing large énough.
When m, € X, @ > 0, let us denote by S(«,, @) the

open ball
(3) Su,a)=du/mueX, lu-ull <aj.

S (u, , @) denotes its closure.

The following theorem is of great impertance for many
considerations in this paper.

Theorem of Kantorovich ([11,pp.636-637).

Let the operator ¢ map the set .= S(«,,R) c X
into X . Let there exist the first and second Fréchet deriva—-
tivesof § on S(4,,1) c N and a linear bounded
operator [ : X — X such that the following inequali=-
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ties take place:

(4) Nrom, Il ¢,
(5) Ard‘m,)-11 « 9 ,

6) 1My ")l éb, ue€Su, n).

Ir
: e d 1
M b b T
--7h
» w=nsd hli‘ 1_°f ,

there exists the linear béunded operator

(9) Rn=Ldw,n1"-

and the equation (1) has a solution u* to which there conver-
ges the Newton iterative moceas

(10) =, - LO'(w,)1"d s, m=01,..
as well as the process '

1) w, . =, -3«

‘no+4q m m = 0, 'I,...

Furthermore,

(12) V™ ol & n,

Ir

(13) h<% ‘and no<n o« IFVI-2H ¢
g A T-o

or
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(14) h=% md 1 £ n,

the solution u* 1s unique on 3 (4, , A )+
Repark 1. The inequalities (4) and (6) take place when

(15) 1ry <« o9,

(16) 1 Qdu,l & & ,

a7 190" épf, s c 8lu,n),

(18) v € ¢, T3 % k.

Remark 2. If there exists the operator [} defined by
(9), the inequality (5) for M = I} takes place with o =
=0 and the process (11) is the modified Newton process([17,
P& 623).

* " Definition. We say that the operator ¢ has the proper-
ty Z with the point u, and the constants ¢, k, r, , r 1if
® bhas the first and second Fréchet derivatives on the ball

S (g, ) Ll end
1) there exists the linear bounded I, defined by (9),

2) there éxiet constants ¢, k, r such that
19) 1N P, e e,

(200 € S(my, K) =2 I, " ()l € b,
(21) 2 > &, = 4-¥4-2 c ,
(22) h = ek c-;- ]

Remark 3. When @ has the property Z then evidently

the assumptions (4) ~ (8) of the Theorem of Kantorovich are
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fulfilled for M= T, , &= 0 .

Remerk 4. Let us denote by (&, the operator
(23) @, = 1-1,9

. mapping X into X . The modified process for ¢ is then

identical with the protess of successive approximations
(24) My, = By 44, m = 0,1,
for \the equation

(25) m o= Qo 4.

Lemma 1. Let ¢ have the property Z . Then
1) O, maps the ball &5 Ca4,, £ )  into itself,

2) |
06) ¥ sup 1QIN<A-VI-2Zh <1,

w25 (uy,A,)
3) Q, is a contractive operator on 5 (44,° A, ) with the
constant of contraction oL , i.e.
(27) Ay, 4y € Bty 12, ) =5 I @ity - Bott, Il € o0 lae, - e, Il .
Proof.

1) Let N, - m 0 £ X, . Then, according to the assump-
tions on $ and its derivatives,

Nag, -4t + QN & 11T das, M+ 0T, § (M) (eby-ae)+ T @ e -Fdus, €
10 dut+4 2 00" kv a8, 1)1 Na-44,0*
and, according to ‘(19),(20),

Mrg-s +Lduls e+ F hn - n
2) There is
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Q) (w) = (¢ () - @ () and

o€ Sy, i)m Q) ()= I Q) -7 O, £
sown RO (43 (-t 1) Na-se, l e nys 1~ VT2 .
<P<C

The function on the right-hand side is an increasing function
of h in < 0,7 ) withthevalue O at h=0 and the
value 1 at h = 1 . as we assume f < 1- the right-

2
hand side is a number o < 1 .

3) The third assertion follows immediately from the well
known.theorem ([1], p.592).

Theoren 1.

L) Let & have the property 2 . Let

B) the operators {,, have second Fréchet derivatives

on the ball S («, , # ) , and

(28) m@ ldu, -, «I =10,
(29) G | P4k, ) = B ()11 = 0
m -y co
(30)  dom I @"(w)- §f ()l =0 uniformly on 5 (4t , 2) -

Then there exists a number mg € N (N is the set

of natural numbers) such that, for m =2 m, ,

a) the Newton processes for the equations ¢, « = O with
the initial approximation 4, , are convergent, and the
limits ,u,:") of the Newton sequences § u,f""‘} for m -
- oo are sol'utions of the equations &, « = 0

b) w* being the solution of the equation JPu = 0 to
which there converges the Newton process with initial ap-
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proximation 44, , there exists a positive number o« « 1
such that

(31) uu*-ui’""néﬁ"-a—; 1 ouf™ 0.

¢) If, in addition to the preceding assumptions,

C)30a) Lim 1Gu-d, 4l =0 uniformy on G (a4, %) >
then '

(32) Lim law*- 1= 0.
m -y

d) If furthermore

D)

(33) K< hy = _’,_'t_——-—— Vi-24

* c

(the equation Q. = O has exactly one solution on Sk, X R
then the equations ém m =0 starting from a certain m ,
have unique solutions on S C.ui, , )

The proof will be presented after we have recalled one
known lemma from the theory of linear operators (e.g. [ 3] p.
164).

Lenms 2. Let K, L be linear bounded operators mapping
a Banach space X into itself, Let there exist, in X , the
linesr bounded K7 and let

(x) AK=LNEARK'N < 1.

Then there exists the linear bounded operator L7 , and we
have

-1
Ok %) Ll & LK1
'.“ =ik uk-Ln’
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1K' k-1t

-4_ L—‘
Crxx) BK UKk L

We shall also need the following

Lempa 3. Let the assumptions A, B, of Theorem 1 take plaw-
ce. Then, for an arbitrary € such that

(34) 0 < ¢ <mim(-g--f‘1—,ﬁ--ﬂ—.) ’

there exists m, € 4° such that, for m 2 m, , the ope-

rators {,, have the property 2° with the point u_ and
with constants ¢, , A n™ x , where

m ! e )

(35) héhméh+e<%; Hoe KV 2 n, + €< L

Proof. Let us use Lemma 2 for $’(44,), @, (4 ), Accor-
ding to (20), starting from a certain m, &€ A", the ine-
quality (x ) takes place. Thus, for m = ., ,there exist
the operators ™ [ & (w,21" and from (x x x) it
follows that

(36) Jm IR = 0.
Furt hermore,
DE Y W PO T Y SRV LU NS - PVRY [

and, according to (28),(36),

G km NG G- [ e | = 0 .
Similerly, for all « € 5 (#or % [

I ')~ 032 (o) e i ™) ' cus) - Bim W) N+ A3 w0y 1wl

and, according to (30),(36),
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(38) tim 7 3" (w)=R™@,, @)l = 0 uniformy onS(,,x).

It follows from (37),(19),(38) and (20) that, for each
> 0 , there exists m (7 ) € A", m () = m, , such that
for m Z2m (7% ) there not only exists l:”'"” but we have

IR™¢, =y £ ¢ +7 ,

we S, )= E’""”Q; wll = 4, € o +7 -

Let us introduce the notations

hing)=(c+n)(te+n) ,
um,é,—z—)'u—l/wzhm) (c+n) .

The function r given by the last equation is defined on the

interval ¢ 0, X, > where b (X,) = % . Both the functions

M(X), & (X) are increasing on<0,x,%; h(0)=h, £(0)= K, .
Thus, for each € satisfying (34), there exists m, e XN,

m, 2m (7 ), such that, for m 2 "M, ,

My, = ¢, Ry =+ €< 1

z’
nm e A= VA-2hm Wcméa,+e</t >
mo

and @, , foo /m 2 m, , have the property Z with the

point u, and constants ¢, , /km ’ /t,("‘) , /4 , and the num=-
bers . /tf'""’ are less than fixed numbers L+ €, /L + € .

That completes the proof of Lemma 3.
Eroof of Theorem 1

a) follows from Lemma 3 and Theorem of Kantorowich. In the
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following considerations, let us choose a fixed € satisfy-
ing (34), and let us assume mMm & My .

b) The operators @,, satisfy the assumptions of Lemma 1,

and therefore each operator G
s -1
Qm" I-E@,,I»(M‘¢)J ém 1
maps the ball 8 (4, , #™’) into itself and is

contrag-
ctive, the constant of contraction being .

o, = nup NG (Il &1-VI-2h, .

we Sy, nt™)

As v € h, & h+e < !2— s there is, for all m 2= My

K, € 1-V1-2(h+€) < 1.

We have
(m) (m) (m) P
'“‘,,,,.,""Qm nv)’u’o 0 9 m =0,1,2, 4
(ﬂl’ m)
Lo e g = G ™

Now,
U = 1B G = 1 Q™ Gl Qibiy - By, 4 ""n&

£ o l™ M‘""MHI (e X7 ‘m [ & M—m) o,

or, according to the fact that &, Mm = 0,
b ™y ¢ S I0du

(m)
“l )

c) As iy eg(u,,fc‘w) c S(m,,n) andasli &u‘m’ Il £

LIlug - Q,,,,)M«"’”’ b , assumption C) yields immediately

(m)
o - s 0
d) It is sufficient to .show that, from a certain m

. B Mg

the operators @m have not only the property 2Z but al-
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80 : .
41@»’# i:_'ﬁ_'—' VI-2he o > n

v

.

Fprom the proof of Lemma 3 we see that there exists a num
ber ¢° > 0  such that, for m > m,, 2 m, , not
only the assertion of Lemma 3 takes place, but also the num-
bers le,, - ¢ 1,lbh, -f| - and therefore also l/cf'"’- n,l =
. are less than an arbitrary positive number chosen beforehand.

The proof of Theorem 1 is complete.
Remark 5 . As k¢ < % , the Newton algorithm for the
equation Q. = 0 converges with each initial approximation

-24
“ue gf“o, —'47,'—"‘)([1] sD+638). If the assumptions A, B,

of the theorem are fulfilled, then an analoguous assertion ta-
‘kes place for the equation (2), starting from some sufficient-
ly large m & N .

§ 2.
Let agaln X be a Banach space. let im be an m=-dimen=-
aionai subspace of X , P, a projection from X into fm .
%, be an m-dimensional space isomorphic with X, . The
isomorphism from fm onto fm be denoted by ¥, 3 yr!
be the inverse of it mapbing 'fm onto ')\(:" o Let us define

an extension ¢, of vy, onto all of X by

(1) It L oy, B o
80 that
(2) Pa» =y wo:: 94", ¢

$ being an operator mapping X into itself, the fi-

nite dimensional operator B, maps X into X, ,
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am g, $ W' maps X, into X, .

-

The elements of im will be denoted by an upper index
m - a™  the corresponding elements of X, by ©™ . De-
note by I the identity operator in X amd by I the identi-
ty operator in 'x‘m « When there is no danger of confusion we
will omit the index m in the notation of eléments, operators
and spaces.

Let us now apply the results of § 1 to the case when J ,
$,, are of special types such that the equations (1),(2) of

§ 1 are:

I éu.dé;y.-KFM-q.-r 0,

i & u™ e R KFU™- P g =0,

K : X — X being a linear bounded operator,F : 2 — X
a nonlinear operator, and g and element of X .

Let us furthermore consider the following equations in X:

1t 3, AL g™ KFyla™-qg,g = 0,

w T m)df —-{m) -1 a

@ KB Fyla™x.9=0

Lemmg 1. Let F be defined on the ball £ = S(u,,R) ,
M, € Xm , and let it have bounded second Fréchet derivative
on 5(m,,n) c S2 . Then

1) the same takes place for the operators ¢, &,.. ,
m = 4, 2, e

2) the operators 6.,,‘ , ¥,  are defined on fl_

« S(y a4, Iy,  I”'R ) | and they have the first two Fréchet
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—_— T
derivatives on 5 (¥, 4, , Iy, 1" 2 ) .

Proof is evident, For example, the last assertion follows
from the implication
- oA =
Nyt ) a™- Yim %o NEnmplly @i™-ap l £ 2 .

Remsrk 1. The derivatives of &, &, , O s Eom are

given by
P = A - KF' ()b,
3" () (h,to)= - KF' () b k ,
O = - B KF (w)
(), he)= - By KF' () v ko,

P R - KF(yl'@) (v R,
B (AR, k)= - g, KF oy ) (4 By R)
Y i he h-qg KEF ' &)y A,

Y (&), R = = By K B F (s ) (4] RO R

Remark 2. Under the assumptions of Lemma 1, the operatofa
F’(w), F are bounded on S(m, , ). ([4],pp.30,56).
Lemma 2. Let the operator F satisfy the assumptions of
‘Lemma 1, Let
(3) tim FK-B, KI = 0,

m ~¥ oo

(4) M"q—&q_,:o.

m Y&
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Then the assumptions B), C),of Theorem 1,§ 1, take place. ‘
Proof. With regard to Lemma 1, it suffices to show that
the relations (29),(30) 30 a) of § 1 are fulfilled. There is

1du ~Pma £ NK-B KIIFul+Ug-RB gl
V@' (a4,) - Bl ) £ VK= B KINF (a0,

NP ) - QL (mIl £ NK=- B KN N F Car k.

According to (3),(4), 1t is sufficient to show that F, F' (),
F’’(u) are bounded on 5 (4, , A ) this being true accor-
ding to Lemma 1 and Remark 2,

The following lemma shows the relation between the so-
lutions of II and III.

Lemma 3. A) If one of the equations II, III has a solu-

tion M:"" € X, or A'Zf"" e )?m , Tespectively,
then so has the second one, and
-—(m) om)
(5) Uy = Y, My R

B) If the Newton iterative process (ordinary or modified) con-

verges for the equation II with the initial approximation

(m)

~
m, € X then it converges also for the equation III

with the initial approximation

— (m) (m)
(6) = Y Al 5

and the same assertion takes place conversely. Furthermore,

) —
if M::" or ,w;' resp. are the solutions of the n=th
equations of the Newton processes (ordinary resp. modified),

then

—_m)
(7 are g, S, m=1,2,.. .
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Proof of A) is given by the appncation of the opera-
tor 4, on the equation II or of the orerator V..: on
the equation III resp. taking regard to (2),

B) Let us pregent the proof for the more complicated case of
the ordinary Newton process.

We have two sequences of equations

(8) «

L3Z)

= Mﬂ*”ﬁ’%'&,KFI(M”)‘?Z,"*QMM”r 0,
(1) &, = #i™e X, m=0,12,..,

]

(9) Ay, = i+ 7, , -9 KF (y “”;,,r',z”,.ana“ =0,

— () )
10) &= AT Y, ™, m=0,1,2,... .

For the proof being done by induction, we have to show:
a) if there exists a unique solution of one of the equations
(8),(9) in i’” or -i_m respectively, for n = O , then the

other has also a unique solution, and we have

(71) Aﬂ‘_‘—; = v “1 0]

b) Let the equations (8),(9),for n = 0,1,..., k = 1 , have

unique solutions in i’ﬁ or X, resp., md let (7) take
place for n=0, 1, ..., k = 1, k . Then if (8) has for n =

= k a unique solution the same is true for (9) and converse-

ly. Furthermore, (7) takes place for n =k + 1 .
In the part a), the assertion about the existence of

. — (om)
the “solution apd the relations: 7 :‘” =Y, 92.“"" are
given in the same way as that in the proof of A) with respect
to % & e B, L, (7,) then follows from
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= (m) ™) ’
the relation 7, = Y, N ’ from (7,) and from the

definitions of u‘,"" , 42;”‘) . The uniqueness follows from
the fact that the operator ¥, is simple.

The proof of b) is analogous.

Remark 3. Lemma 3 A for linear operators is sometimes
called lewma of Gavurin (Kis [2]).

Corollary of Legps 3 A. If the solution 4f™ 1s uni-
~ — b
que on the set M ¢ X, then the solution u:" is u~

— — - j— —w
nique on the set M c X, , Me{a™ |t -%u"", “e M},

Theorem 1. Let the operators in the equations I,II,III
have the following properties

A) The operator K: X — X 1is linear bounded. The nonlinear
operator F : 2 — X (N2 = S(w,,R)u € 5.(; ) has & boun-

ded second Fréchet derivative on 8 (4L, £ ) € L .
B) Let

(11) M%HK-B»KII=0,
(12) m% llg,-ewg,"eo.
C) There exists a linear bounded operator I'."gt_—t Ld Cu, y1-*

and real numbers c, k, r, , r such that

(13) IR P, Il &6 ¢ ,

(14) M € S, , R)=> R & ()l & 4 ,

’

(15) /{,>ﬂ.£ A-V1-24k ,
y
(16) h‘:‘.ﬁeh<,}

- 349 -
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Then . :

1) the equations III have, from a certain m, = 54, solu~-
tions 42:”’ to which there converges the Newton iterative
process (ordinary or modified) with the initial appreximation
M, = Vm A, -

2) There is
. (m) F
(7) A Hyl'B, - " 4= 0 ,

u*  being the solution of I to Wwhigh there stme¥iies the New-
ton iterative process with the initial spproximetion u, .
3) If furthermere

D)Mgn",_ﬂ:_z_z__ M"h'c

?

then there exssts m, € A°  such that, far m & m, ,the
solutions of the equations III are unique on the ball
T, lyI"w) .

Proof. The first two assumptions contein the assumptions
of Lemmas 1 and 2., From them and from the other assumptions the-
re follows that ¢ and ¢, satisfy all the assumptions of
Theorem 1,§ 1. Therefore the assertion of that theorem takes
place for the equations I and II. Thus, there exists a solution

u*

of I to which there converges the Newton iterative pro-
eess with the initial approximation u, , and, fa the equati-
on II, the assumptions of Lemma 3 are fulfilleds That means
that the sssertion 1) takes place and (7) is fulfilled for all
m starting from a certain m, . Thus we have, for the solutions
of II and III (:;:'eceived by Newton processes with the initial

approximations u, and y, M, ), the limit relation

[
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’ - ) (m)
Lo K 5 h= 0.
A . £ ) g *.

Furthermore, Theorem 1,§ 1 gives

muu*-wf:"ﬂ= 0,
-~y o0

which is just the relation (17).

When the assumptions under 3) take place, then the same

is true for the assumption D) of Theorem 1,§ 1, That means
that, from a certain m, = m, , the. equations. IT have

uni-

que solutions on the ball 3_ [M,,, & ). This and the Corolla-

ry of Lemma 3 implies the assertion 3.

The next theorem gives an information about the relation

between the solutions of III and IV.

Theorem ~. Let
A) the operators ¢ and ¢, in the equations I and II
tisfy the assumptions A),B),C) of Theorem 1,

sa=-

- (m)

B) there exist the inverse operators to the operators §., (&, )

—_—m)
for m & m, (where M,; is the solution of III,

4 number - both from the assertion of Theorem 1), and let us

have

(18‘,“[5‘ (A'Z:”))JJM £ c for m = m, .

c) ’ -

1) I KA+ N 1R P Iv, I K -B K z5%, 0,

20) N P+ B 1N B P I 1 Mg - B gl oy 0

for the values (f3,X,»,¢t):(1,4,0,0),(4,4,0,1),(2,1,1,2),

QL NG I I 1y 1 N (1-B ) Fu*l— Q

m =y oo
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for the values (fb,/a,t) (4,0,0),¢2,4,2),¢4,0,1) ;

(22) Hog, Llw N 0CT=BIF (™) o=, 0.

Then there exists a number m, € -/V, m, = m, , such that
the equations IV have, for mm = M1, , solutions 17;“"”‘"
for which

- m)  —(md _e .
(23) !44‘* - Vm ﬂm-’ﬁ 0

Eroof. Let us write
. . Eq“(a:n))l-‘!‘ Fp.:*‘
In the Theorem of Kantorovich (§ 1), let us put, for a fixed m,
Fef*, 3%, «=a"
That gives the following corollary:
Let

(24) A= I g, KLFOE &)-B Foy ™11 2 9,

@) By = A T* g, K LFL )~ B Fia am Il vl g <1,

(26) G, = UT%, xg,f-"ap"""’n 1% 142 oe,,

for sl ™e §C4‘Z,‘:", ©n )

@n k. . Am %m 1
T -, )t €z
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-V1- 219 _”r.?

(28) [ 2 /tgw.?

Then the equation Yay “w =0 has a solution_'fl‘-,im

for which
—_m) - () m)
(29) W ~#y I = 2

It 1s thus sufficient to show:
1) Um A =0,
M -y of

2) 4im B =10,

” =y o

3) there exists {Pm such that
a) m A, C =0 for all &&° 63(4& ,P,.,.

M~y oo

fR) fr;)m a certain m: e N, fm,: 2 m, , there is
(m
9.\' 2 ,‘.

Indeed, in this case all the assumptions of the corollary
are fulfilled, and we have
. tm)
m% e - ~0 ¢
1) Let us assume m 2= /m, ., Then, according to (18),
’ -1 _(-d
An g e IKINg 1II-B)F O & )1 .

By Lemma 3 there is

-1 —(m )
(30) . &, = u™

? being the solution of II given by the Newton process from
the point u, .« According to Theorem 1 there is

) >
(31) My M—;—L A
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Thus we have the inequality followiné from the last one:

(32) Ay £ e HKI g N1+ 1R Faul™- Fau™b +
+e Kl g I H(I-R)Fu*ll .

From (3;1) there follows that, starting from a certain m,

there is ,w:")e g(,u,,, ) and, according to the assumption
about the existence of the derivative F'(w) on S(4,, &),

we have

(33) I Falm- FM*IM wfvﬂF(u.mSCa. | B Pl B

According to Theorem },§ 1, there exists a numﬁer a, 0< x<
< 1, such that

ERT I PA 1’”""’ {1K-2, KIIFal™l+ 1g-£, g 17 -

F'(u) is bounded en S (a(,, 4 ) see Remark 2 . It fol=-
lows from (32),(33),(34) that for having A — 0 it is
sufficient

I 11+ 0B D IK=-F Ki =2 0,

tg 11+ 4R MDIg- R, gl —=2 0,

I g I (1-BIFu*l 5= 0,

this being true seeording to (19),(20) for (M, N,A,t )= (1,4,0,0)
and aceording to (21) for (n,5,t) =(1,0,0).
2) Similarly, (25) yields
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Bm €Kil HICI-RBIF (S Nyl I =
€ CUKI Ngg ¥ (4+ UB DIy INFai®)- F/w™l +
+ c UKl llgg ¥ 1 (1- BOF (™) (R

According to the assumption about thc existence of

F''(w) in & (a4, , &), there is

I ™) - Few™ I £ suge | Fr(as I P P [N PP

From the boundedness of F “(u) on 3_(44, , # ) and from the
two last relations there follows that for having B —» 0
it is sufficient

g K1+ 1B DR INK-B Kl 5%, 0

m -y oo ?

tg i+ BDiylilg-2 gl 5% 9,

m oo

Neg, B UCI-RIF ™)l Nyl N o532 0

"y o

this being true according to (19),(20) for(f,X%,A,%)=(1,4,0,4)
and (22),

3)Letuschoosep Ta-’d" max (1, “-V-"ﬂ.

Then, from a certain m , the following implication takes place:

- ()

(35) 2 ™e S (2l s G ) =¥ Y, a™e S (u,, 1 ), d.e.

- el — (m)

Lz - g~ eg, = ¥, a™- u, h £ 1 .

In fact, there is -
- ", - - - —
TR0 T PR R TV A7 Lud T LVl Tl

3
-& —# e
+”M*-M,lé‘i!—'+$ﬂ+ﬂ,-l&- 2’+8,,*_,
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where % > x, according to (15) and €, —¥ O according
to (17). Now there is, similarly as in the previous points,
C.=cllKillig, 1ng ¥y IFGla=)i.

-1 — (m)

By (35) there is, for the given P s Y L €
e S(um,,n).
According to the assumption, F ’(u)
Thus, to fulfil 3 &), the following is sufficient:

1s bounded on S (&, , % ).

NG U2 A+ 1 B N B gl 1 I K=By Kl 557, 0,

g B4+ U B D ER N Ny g -Rogl—, 0,

N NENR, 0l 1t (L =B Fu*l =2 0

but this is true according to (19),(20) for (f1, %, A, £) =
=(2,4,1, 2) and according to (21) for (12,4,¢)=(2,1,2).
The condition 3 3 ) is equivalent to the condition

rette o A-VI-2he Am  ppar (1, 141 .
2 . 1-Ba,

If the preceding conditions are fulfilled, there is
A,—+0, B—0, A, C—0, 4, — 0 and therefore

1-~1-2hﬁ 4.

e m -y o

To satisfy 3 3 ), it suffices to have A Il'y: I — 0,

this being true if
Negu PCA+UB, DIy IIK=-B, KI —% 0,

N A+ U DIy W kg -Bugl =% 0,
N I Hy N UCT =B Fu™ l =% 0

bat this is fulfilled according to (19),(20) for
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(fviny 7, £)e (1, 1,0, 1) , and according to (21) for
{ﬂ,b’t) - (4, 0,4)’

Remark g. If we ‘assume that, for some m , there exists
a solution v*m’ of the equation IV and that we know some
its approximation ¥ (m) the Theorem of Kantorovich gi-
‘ves us the following assertion:
Let X be linear bounded and let F have bounded second Fré-
chet derivative on the ball 5 (™% ™, Iy "l @, ). Let the-
re exist the linear bounded operator

A d.f E!’ —(m) J-'Y

Let furthermore

DIBE. B F™INE e, ,

?

2)l@,i’,(&?"")-Tl-—lZwEi,,"(?"’"’)-?;h‘F hzd, < 1
3 1B, B () e de,, for T e SHFE™, T ),

— dt  Cm &
) b, = d‘,,:;’

-P—' s-séi 4-"4-2&2‘, (4]

< 1,

2

- = P, 1-d..
—
Then the equation III has a solution 4¢, for which
la@™- "1 e g .
o

3
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