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Commentationes Mathematicae U n i v e r s i t a t i s Caro l inae 

8 , 2 (1967) 

APPROXIMATE SOLUTIONS OF EQUATIONS IN BANACH SPACES B.f THE 

SEWTOV rrERATIYE METHOD. 

PART 1 . GENERAL THEOREMS . 

Zdenka G-WJSCHAFTOVX', fraha • 

§ 1 . 

Let X be a Banach space, Jfl c X an open set, <J a 

nonlinear operator on SL and { <JUiC-r<f » sequence of non­

linear operators which in some dense approximate $ • The 

main problem studied in this paper is the following one: if 

there converges the Newton iterative process for the equation 

(1) §AA ** 0 , 

under which assumptions the same takes p lace for the equations 

(2) $ * , * * - 0 , 

mbeing large Enough. 

When A4,c e X, a> > 0 9 l e t us denote by S (<U,P 9 <k\ ) t h e 

open b a l l 

(3) 5 (44+4 *) ~ {AA,/AA e X, WAM-AA,, \\ < a } . 

S (4i0 , a,) denotes i t s c losure. 

The following theorem i s of great importance for many-

considerations in t h i s paper. 

Theorem of Kantorovich ( [1 ] ,pp .636-637). 

Let the operator $ map the se t i l * S (ue , fc ) c X 

into X • Let there exis t the f i r s t and second Frdchet deriva­

t i v e s of $ on 5 (>aM /t ) c i l and a l inear bounded 

operator P.: X —* X such that the following inequal i -
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t iea take place: 

<4) Й PфЛІ, И Ä C , 

(5) I V &(*>.)- II -• * » 

<б) I Гф-CuH *.*<, >u. e 5 ŕ«,, ЛO . 

if 

<7) ^ . ŘÈL Ó i. , (/- < ^ , 
' ( -ЄҐ)1 -

<3) 

there exists the linear bounded operator 

t9) P
#
 « tfr'Oi^J-* 

and the equation (l) has a solution u* to which there conver­

ges the Newton Iterative process 

(10) M*„ m AA,„ - C •'f-ttfc )]-<$ 4l„. m, m 0,1, .. . 

m well as the process 

<"> *„„ - ~*„ - n. $ ̂  , /«.. 0,1,... . 

Furthermore« 

(13) h, < 4 and * . * * . , 1 + Vl-2*> _JS_ 
2 1 A -f-t-* 
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<u) i i - I and ?t * /*t , 

the solution u* is unique cm S (^9 , *> ) • 

Remark 1. The inequalities <4) and <6) take place when 

<15) i r M r . 

<16) J $ .U0B 6 ot , 

<17) I * " ( * * ) I * A > >u, c 3* (yu,* , *> , 

<i8) r<* * e > r/i * & > 

Remark 2, If there exists the operator Q defined by 

<9), the inequality <5) for P « fj takes place with </** 

-* 0 and the process (11) is the modified Newton processd 1J , 

p.|623). 

Definition* We say that the operator <$ has the proper­

ty I with the point uo and the constants c, k9 rd , r i f 

$ has the f irst and second Fr^chet derivatives on the ball 

5 < <"-• , H, ) c i l and 

1) there exists the linear bounded i"J defined by <9)9 

2) there* trie t constants c, k, r such that 

(19) I T# * 4C# 1 * C , 

(20) ^ e S u ^ / t l ^ i r j ' f^') II * M , 

(21) * > * - . • - J-ft-*-*- C , 

(22) i t - Є Л* €í* 4* 

Remark 3> When $ has the property Z then evidently 

the assumptions (4) - <6) of the Theorem of Kantorovich are 
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fulfilled for T «• n# , <f -» 0 * 

Remark A. Let us denote by d0 the operator 

(23) Q, * I - C # 

mapping X into X . The modified process for $ is then 

identical with the process of successive approximations 

(24) u*„ * Q0<"„ /*- 0, V -

for the equation 

(25) U * fl* - ^ • 

Lemma 1. Let $ have the property Z • Then 

1> Q0 maps the bal l 5" ̂  x*0 ., /£ ) into i t s e l f , 

2) 

(26) <* & A»U^ WQ'(^)W< 4~ W - 2 * < ^ > 

3 ) Qf i s a contractive operator on 5 (AA0 ./ /t0 ) with the 

constant of contraction &, , i . e . 

(27) x ^ ^ e S C ^ ^ ^ l O ^ - f l ^ J £ (TO l ^ - x t £ // . 

Proof. 

1) Let IAA*9 - M,t -6 /t0 . Then, according to the assump­

t ions on $ and i t s der ivat ives , 

tju,,-ju, + r.$4A, t * /;r; § ^ 1+1 r; # ' r* j a4 # - ^>+ C$-u - i7#^ # N 

and, according to ( 1 9 ) , ( 2 0 ) , 

| u f - *i + G $ ^ I * c • £ A ^ -_ *« ' 
2) There i s 
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a; (4*) - ÍФ'^)- *'(«>)) «* . 

44,, Є S (44,, ,*„).-> ñQ', U ľ ) ï « H C $'(44,)-Г,$'(44.t)І & 

& /ШĄЪ II ф"(л4,,+lf-Í4Л,-44,,l )ll í-tt-ł^ I * A, Л, * -f - Y1 - 2 H . 
0<Ф<1 

The function on the right-hand side is an increasing function 

of h in < 0, j > with the value 0 at h - 0 and the 

value 1 at Jh, * 4 • As we assume Jfa < f the right-

hand side is a number oc- < 4 • 

3) The third assertion follows immediately from the well 

known, theorem (U3, p»592). 

Theorem 1> 

A) Let $ have the property Z • Let 

B) the operators c}^ have second Frechet derivatives 

on the ball £ (44,e 1 ̂  ) , and 

(28) ^ r v // $ u, - A x^ // ** 0 , 

(29) 
•тřv-łö-

i m II tf'Uc > - *w (<**> - - -* > 

< 3 0 ) ^ - ? £ " *'' ( 4* ^~ $Z>(/U )fi *° uniformly on S (<U>, , M ) 

Then there exists a number <m,<. € Jf ( Jf i s the set 
Xf 

of natural numbers) such that, for ntrv iSt ^^t£ > 

a) the Newton processes for the equations ^^ >o. ** 0 with 

the initial approximation AA+0 f are convergent, and the 

limits AA**^ of the Newton sequences i AA£ ? for /n-t 

~* 00 are solutions of the equations $^, AM * 0 $ 

b) X4* being the solution of the equation $>u « 0 tio 

which there converges the Newton process with initial ap-
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proximation 4jum , there exists a positive number oc «e -4 

such that 

(31) I-a*- <*> « * .JTi «.»- • ̂ " ° « • 

c) Ifi in addition to the preceding assumptions, 

OOMjUmu l$u- &> AJL f • 0 uniformly on S" (^ , *> > > 

then 

(32) /-W. II *>*- ">T% I - <> 

d) If furthermore 

D) 

4+ ttT-Tл 
(33) H, < Ki - ~ LJ£ * C 

(the eojiatioa $44, • 0 has exactly one solution on S ( ^ » , ^ ^ 

then the equations t j^ .44, - 0 starting from a certain m , 

have unique solutions on ? C AA.0 , /t ) • 

The proof wil l be presented after we have recalled one 

known lemma from the theory of linear operators (e.g. [3] p« 

I64). 

Lemmsi_2« Let K, L be linear bounded operators mapping 

a Banach space X into Itself• Let there exist, in X , the 

linear bounded K~ and let 

( * ) I K - LI I K~4 I < 1 . 

Then there exists the linear bounded operator L , and we 

hate 

<**' " • " « - I - I ' K ' M K - L I ' 
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t s , *-« ,-« , -*~ ,- < ' < - - ' 

(**«) I R -i- I >,. „ K-r f Iłc-Ł.1 

We shall also need the following 
L*!Hfn 7- ^ t **-e assumptions A, B, of Theorem 1 take plai­

ce • Then, for an arbitrary £, such that 

(34) 0 < £ < /rnun { -z- M,, H - /t0 ) > 

there exist* /m>t € Jf such that, for an, £ nrt f the ope­

rators $/rr% have the property 2 ' with the point u and 

with constants c^ , J ^ , /t^\ H, f where 

(35) Jh, * Jh^6 H+ £ <{>*** *'?* £">*+*>< *> * 

Proof, Let us use Lemma 2 for $'(M.0 ) , &^ 6*t# ^Accor­

ding to (20), starting from a certain /m^ € Jf 9 the ine­

quality ( # ) takes place* Thus, for /rn, & /m,f , there exist 

the operators I?**'.* £ $W <^* )J""'f a n d ^ ^ <* * * ) i t 

follows that 

(36) JU«n, \\ £«"*_ r I • 0 • " 

Furthermore, 

ip .#^- r r t « % ^i - n c ^ i l#«»-«-..*. |«• ,c-c , , , , , |»*>«* 1 . 

and, according to (28),(36), 

(37) turn, II I 7 # « » - C * * * * . ^ ' " * ' 

Similarly, for a l l >«. e 5" C<** ' H ' 

and, according to (30),(36), 
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(38Y i£v | (7 $" Co, ) - C ^ C . < -* )» - 0 uniformly on SCt^*): 

It follows from (37),(19), (38) and (20) that, for each 

*l > 0 } there exists /m (*i ) e ^", /TO C*l ) •* /wi., , such that 

for /m. * tm. C^i ) there not only exists (-'**•' but we have 

«. e 5 Co-., * ) - + 1 C ' ^ C f**>l - -*W -» -fc + ^ * 

Let us introduce the notations 

Hill) ~ (C +*[) (M, + *i ) , 

*(*)„ - i - " H - 1 / 1 - 2 ^ ) (c+%) -

The function r given by the last equation is defined on the 

interval < 0, XQ > where .^ C^) * 4 * Both the functions 

Jfr(X), KCX) are increasing on <0, x0 > j i t (0)s>H, /iCO) * Ke , 

Thus, for each 6 satisfying (34)» there exists /rru e jT, 

fin 2. m\, Ctl ) , such that, for /m. .* -^t£ , 

A-v = Con -*!* " ^ + £ * I > 

**»,
t- 4 - ^ ' - Л J22L e ^ .^ /£„ -f- e < H> 

and ^ ^ , for /rn & <nt f have the property Z with the 

point u0 and constants e^ , -^-^ > /t^** , /£ , and the num-

bers .#2. „ /C„ are less than fixed numbers Jh + E», /t-«- e 

That completes the proof of Lemma 3. 

pgQfflf Pf f̂aeoreffl j, 

a) follows from .Lemma 3 and Theorem of Kantorowich. In the 
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following considerations, l e t us choose a f ixed e s a t i s f y ­

ing (34), and l e t us assume /WI* * / W fe * 

b) The operators $nv s a t i s f y *&* assumptions of Lemma 1, 

and therefore each operator fl,^ 1 

cu- 1- -&» u->>r'*.» . 
maps the ba l l 1? ( AJU0 , M,^) into i t s e l f and i s contra­

c t i v e , the constant of contraction being 

A.s K -= > t ^ - « A + S < J , there i s , for a l l /m & J^g , 

Ć 4 - i!T^-T?X7T) < л 

We have 

< S - «**• , -*íг- ^ , «* - 0. '.*»••• > 
bmЛ 

Now, 

»«,*-<'11- iisu^-o^r- -«<*•*- a-C* <*<- tL"?* -

*«1-u.*- <°II *«c * <"- "7 *• ̂ r ' 11» 

or, according to the fact that &* / U ^ * 0 9 

I W - 4*7'I * r i - 11 c fc^' 11 . 

c) Aa A U ^ C .56*4,,/tf) c 5 ( « j , - * ) and as » Q fl-lfS"* " -

-6 117 II IK$ - i ^ ) ^ ^ *" > assumption C) y ie lds immediately 

d) I t i s suf f ic ient to .show t h a t , from a certain /tn, & rfl^ 3 

the operator® $m have not only the property Z but a l -
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8 0 

лfÜ 4+І4-2h.m ^ ж к . 

From the proof of Lemma 3 we see that there e x i s t s a num­

ber €>' > 0 such that , tar in, & *rn'e,, * / m £ - not 

only the assert ion of Lemma 3 takes p lace , but a l so the num­

bers I C ^ - 6 I 9\M^M. I - and therefore a l so l / t f*- KA I -

are l e s s than an arbitrary pos i t ive number chosen beforehand. 

The proof of Theorem 1 i s complete. 

Remark I . As i e c < f , the Newton algorithm for the 

equation ($AAm * 0 converges with each i n i t i a l approximation 

U * S (Moy —jfj^ )(il} ,p . 638) . I f the assumptions A, B, 

of the theorem are f u l f i l l e d , then an analoguous assert ion t a -

*kes p lace for the equation ( 2 ) , s tart ing from some s u f f i c i e n t ­

l y large mt & JP * 

§ 2 . 

I*et again X be a Banach space. Let X^ be an m-dimen-

s ional subspace tf X , Pw a projection from X into X^ . 
x**v toe a n ^--dimensional space isomorphic with X^ • The 

isomorphism from 3 ^ onto X^ be denoted by 1 ^ •, V&Z 

be the inverse of i t mapping X^ onto 3^, . Let us define 

an extension c^ of y^ onto a l l of X by 

(1) g^AA, & yufa AA, 

so that 

(2) Yщ, - , yfŹ 9W 

$ being an operator mapping X into i t s e l f , the f i-

nit© dimensional operator ¥m w -°aps X into X^ , 
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The elements of 1L^ will be denoted by an upper index 

rrrt ~ AA} , the corresponding elements of X^ by ^ < w
 # De­

note by I the identity operator in X and by 1 the identi­

ty operator in X,^ . When there i s no danger of confusion we 

will omit the index m in the notation of elements, operators 

and spaces. 

Let us now apply the results of § 1 to the case when # , 

4 ^ are of special types such that the equations ( l ) , (2 ) of 

§ 1 are: 

I QAA,^ AA* - K FAA, - 9.. * 0, 

II 4 J L ^ « M»«- Pm K *„**- £ 9. . 0, 

K ; X —• X being a linear bounded operator, F : Jl —• X 

a nonlinear operator, and g and element of X . 

Let us furthermore consider the following equations in X : 

III 1^ &"*& U"*- c^ K FVJAZ'*9- qu&- 0 , 

Lemma 1» Let P be defined on the ball Jl * 3(AA07 R ) / 

' 4A\ € X f and let i t have bounded second Fre*chet derivative 

on 5 (AA,0 7*t) c SL . Then 

1) the same takes place for the operator® $ , ^ , 
Mi * 4, 1, ... , 

2) the operators 3L > V**, are defined on Ji^ » 

» 5 ( ^ 4 ^ , t f y ^ (lmi R ) and they have the f irst two Fr^chet 
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derivative* on 5 ( Y*n / " > , " VV* » " • * ) ' 

Proof is evident. For example, the last assertion follows 

from the implication 

I -C* 11 £/"*'- %,-«•. I -J * «-*• *¥<?£**- -*-»»'-* * -

Remark 1 . The derivat ives of # , $„ , , $ .» , Hf^, are 

given by 

#'(*(.).K * A - K F'(M, )M, , 

$"(A*,)(h,,Jk) - - K F"(M,) A. A , 

$£, f,* K-M*). - 5. K FT**) A A, , 

?1 Cil) * - .H - SU K F Y % : ^ ) f*C* * > , 

y±<*)Ji. JL-g^KIH F'Cv£ & ) (VJ & ) , 

IF* f i t ) ( lL, .*)- - <&> K Sv F " f y ; ^ t f * ^ ) t i £ * > • 

Remark 2« Under the assumptions of Lemma 1, the operators 

FY-ft)f F are bounded on 5 (AA,0 , K ) . (£4JiPP.30,56)« 

Lemma_2.* Let the operator F satisfy the assumptions of 

Lemma; 1* Let 

(3) JUm I K- ̂  K I - 0,-

(4) JUmta-ZalжO 
4 ЛП-tÄЃ ^ " * тГ 
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Then the assumptions B), QJ,of Theorem 1,§ 1, take p l a c e . 

Proof. With regard to Lemma 1, it suffices to show that 

the relations (29) ,(30) ,(30 a) of § 1 are fulfilled. There is 

I * * - 4 w < a l U I K - I ^ K I IF«.# + I ^ - ^ ^ * > 

l*V.4^.>- 4C '-«_>' * I K- IP K« I F'r-i*., >ff , 

|| ffa) -fc(*.)l 4IK-Z.KI I F*(M.)i . 

According to (3),(4), it is sufficient to show that P, P (u), 

F " ( U ) are bounded on 3" (AA,0 ., /i, ) this being true accor­

ding to Lemma 1 and Remark 2. 

The following lemma shows the relation between the so­

lutions of II and III. 

Lemma 3. A) If one of the equations II, III has a solu­

tion Ai,^ € X ^ or ZL£* c X ^ , respectively, 

then so has the second one, and 

t _, * — (mi cm,) 
( 5 ) -** • in*. "-* • 

B) If the Newton iterative process (ordinary or modified) con­

verges for the equation II with the initial approximation 

^ 0 e ^m/ then it converges also for the equation III 

with the initial approximation 
,,x — (m%) m (m) 
( 6 ) ». -%>", t 

and the same assertion takes place conversely. Furthermore, 

if 4A1* or Ju,1^ resp. are the solutions of the n-th 

equations of the Newton processes (ordinary resp. modified), 

then 
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froof of AJ ia given by the application of the opera­

tor ^5^, on the equation II or of the operator %^ on 

the equation III reap, taking regard to (2). 

B) Let us J^aaent the proof for the more complicated case of 

the ordinary Newton process. 

We have two sequences? of equations 

(8) M^„ - ̂ • ̂ n , 1^- £KF'(«,„) n t l / + $^u>„- 0, 

(7Q) <o» ' M.^e. *m. > ** - 0t 4, 2,... , 

(ю) Љ,*• ÃZ^ш УÍ^ĄЛÍ^ , m, - 0, 1, ź,... • 

For the proof being done by induction, we have to shows 

a) if there exists a unique aolution of one of the equations 

(8)f<9) in X ^ or X respectively, for n = 0 , then the 

other has also a unique solution, and we have 

<V ^ m *v **i -

b) Let the equationa (8),(9),for n = - 0 , l , . . . , k - l , have 

unique aolutiona in X^ or X ^ reap., and l e t (7/ take 

place for n * Of l f . .•, k - 1, k . Then if <8) has for n * 

» k a unique solution the same is true for (9) and converse­

ly. Furthermore, (7) takes place for n = k • 1 . 

In the part a ) , the aasertion about the existence of 

the*solution and the relations *2"/"*» %>, *l?** are 

given in the same way aa that in the proof of A) with respect 
t 0 %*$mA+fm'm $»* **9

itm> • ( V then follows from 
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the re la t ion ^f*** %^ 1*** , from (7Q) and from the 

def ini t ions of 44\ , 44*i , The uniqueness fol lows from 

the fact that the operator ^ i s simple. 

The proof of b) i s analogous« 

Remark 3« Lemma 3 A for l inear operators i s sometimes 

called le-nma of Gavurin (Kis C2J). 

Corollary of I'eWl ? A- If the solut ion 44,^ i s uni-

que on the set At C X^ then the solut ion 44,^ i s U-

nique on the set M c X ^ , M *{UCmi \fi>('m*%><U,(m>, 44S**£ M} . 

Theorem 1. Let the operators in the equations I , I I , I I I 

have the following propert ies 

A) The operator K 1 X —fr X i s l inear bounded. The nonlinear 

operator F . SL —• X ( J ! - * S (44,0 f R ), 44^ € XM ) has a boun­

ded second Frgchet derivative on S (44,*, /t ) C JX » 

B) Let 

(11) ic/m, « K - £v K II * 0 , 

(12) JiCZ » 9- - 5, 9- ' • ° * 
"•v *-y *w* 

C) There e x i s t s a l inear bounded operator P 2» C $'l^«. , ) 3 " 

and real numbers c, k, r„ , r such that 

(13) » c * U., II « C , 

(14) AA. e % fa,, *•)-+& r, §"(,U)n * M. , 

(16) Jh 4£> a M, < £ . 
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Then 

1) t h e equations I I I have, from a c e r t a i n Aft0 & /& , s o l u -
— Am) t io i t s 44,^ t o which t h e r e converges the Newton i t e r a t i v e 

process (ordinary or rnodified) with t h e i n i t i a l appNMcimation 

<U>, » Vm, *>* ' 

2) There i s 

p «# S T * * * 5 

(17) J и. * * ? Ä . Г - 4 * * 1 » đ , 

u * being the s o l u t i o n of I t o whl0h the.Fe'*&*&#*%&§ the New­

t o n i t e r a t i v e process with the i n i t i a l apfaroxlffi&tlon u e • 

3) I f furthermore 

t h e n ther« e x i t t s / m ^ € Jr such t h a t , fox* /m* ife /m^ , t h e 

so lu t ions of the equations I I I are unique on the b a l l 

5«i». iv£ir<H >. 
Proof* The first two assumptions contain the assumptions 

of .Lemmas 1 and 2. From them and from the other assumptions the­

re follows that $ and $m satisfy all the assumptions of 

Theorem 1,§ 1. Therefore the assertion of that theorem takes 

place for the equations I and II. Thus, there exists a solution 

m* of I to which there converges the Newton iterative pro­

cess with the initial approximation u^ , and, for the equati­

on II, the assumptions of Lemma 3 are fulfilled. That means 

that the assertion l) takes place and (7) is fulfilled for all 

m starting from a certain me • Thus we have, for the solutions 

of II and III (received by Newton processes with the initial 

approximations u0 and y ^ 4A,p ), the limit relation 
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mw -"T OP 

Furthermore, Theorem 1,§ 1 gives 

Urn, U * ,* - #£* II « 0 , 

which i s just the re la t ion (17) . 

When the assumptions under 3) take p lace , then the 

i s true for the assumption D) of Theorem 1,§ 1 . That means 

that , from a certain /ttt-j fe /ffi> f the,; equations I I have uni­

que solutions on the bal l 3T (*AC 9 ft. ) , Th is and the Corolla­

ry of Lemma 3 imp l ies the assert ion 3 . 

The next theorem gives an information about the re la t ion 

between the solutions of III and IV. 

Tfteprem £ . Let 

A) the operators $ and fy^ in the equations I and II s a ­

t i s f y the assumptions A),B),C) of Theorem 1, 

B) there ex i s t the inverse operators to the operators ^ ^ 6 # * ) 

for m/%> Ik /nv0 (where ZL# i s the solut ion of I I I , m0 

a number - both from the assert ion of Theorem 1 ) , and l e t us 

have 

(18# II C 9^ (M,^ )y4 | £ e for rm, & <m,0 . 

C) 

(i9>i^rf^i^H)N^rivriHK-^KB^^ o, 

aoHsura^c^^ ° 
for the valmes (ft, Kf * , t ) * (1,1, 0, 0), (1,4, 0,4),(2,1,1,2), 
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for the values (fr,/>, t): (4,0, 0), (2,4, 2), C4, 0, 4) } 

l22)l<&lll'l£i«tl(I-Z>>fr'C«>*)l<tt, ° ' 

Then there exists a number /m>s C dff sm,- fe nn> . such that 
the equations IV have, for rm, &> ^^± , solutions %t (m^ 

for which 

(23) IS,?- ^ ' - v r * ° ' 

Wrqoim Let us write 

In the Theorem of Kantorovich (§1), let us put, for a fixed m, 

r v £ T »..•'#'*..?*»: ^ - ^ •* 
That gives the following corollary: 

(24) .v- \\ri:<i„Ktrty£a?)-p„F(^4z<z>)n± *_. , 

(25)B^- i fj*^ K - F ^ < * V £ P'CT£x*>m in£u*£<i, 

<-«><U - t ^ K ft F ^ ^ ^ J I f^V.* -_. 

for .11 ^ - ' e 5 <M£\ fU > , 

(27) Лv,, ____J__Ł__* 1 
« - e£ )' 1 
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(28) $»**•* j£—** TT$*, 

Then the equation W+x, *Us * Q has a solution nf^* 

for which 

(29) I 1£ - *«* I * *# 

It is thus sufficient to show: 
1) i*>m- A * 0 , 

2) i/i/m* B^ * 0 f 

3) there exists { f ^ } such that 

<£) JUmv A^L ~ 0 for a l l ^ " " e S (£>!?*, Pm, } > 

(I) from a certain m,0 e Jf, frv & *n>0 , there i s 

?*v *' <"*' • 

Indeed, in this case all the assumptions of the corollary 

are fulfilled, and we have 

Js& "T* -o. 

1) Let us assume mt & rmfi . Then, according to (18), 

By Lemma 3 there is 

<3o *c< x£> - **>, 
u^1 being the solution of II given by the Newton process from 

the point u# • According to Theorem 1 there is 

<3-> "r'-Frt <~* • 
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Thus we have the inequality following f-rom the %smt one: 

(32) A^^tlKUg^Ul+IZiiiK***. FM** + 

+ c iKi 1 ^ 1 H(I-fL>F4+* t . 

From (31) there follows that , s tart ing from a oertain m, 

there i s AA,C£* € *5(A<C>,, ft ) and, according to the assumption 

about the existence of the derivative F ' ( « ) 00 5 (M>0, it ) f 

we hay£ 

l33)»F4A.?LFMml* >^\\F'C4A#L44!?-AA?]l lM*-*Cl. 
M 0<&<i m 

According to Theorem } ,§ 1, there ex i s t s a number cc, 0 < aC < 

< 4 t such that 

ЪAПAAЃ-ЛЛ!?U JЛLцк- ţ кi 1 ғ*c'i+ '9--S.*1? 
1 - CC 

F'(u) is bounded ©n 3T ( M,0 , ***, ) see Remark 2 • It fol­

lows from (32), (33), (34) that for having A^ —f 0 it is 

sufficient 

this being true aeeording to (19),(20) for (ft,*,<£,* )*(1,4,0,0) 

and according to (21) for ( . f t , * , 4) m C4f 0% 0) * 

2) Similarly, (25) yield* 
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Bw < c flK II «91K Mfl-fJv)F7<*r>>« »T~ " * 

* cBKI l l ^ l ( 1 + »t^l)|lv^lllF'f<"">>-F7^*>I-«" 

+ c l K I llg^l |(l-IJv>FY*c*>ll l l^* II • 

According to the assumption about the existence of 

F " ( U ) in ST (44,0 , K ) f there is 

H F'(uf)- F'6**)IU *#* II F"(M,*+'&[uTl«>*lll l l ^ - ^ T ^ ' 
* 0<V><1 * 

From the boundedness of F " ( U ) on 5 C 4A9 , H, ) and from the 

two last relations there follows that for having ft, —v 0 

it is sufficient 

l*,M1*«^l)l<4MK-«S..K»€----> 0, 

Iq^lM + H ^ m ^ - "9-- 5.9--̂ H?t °> 

l«JI.I-^>F'C«*>lli£l^--& 0 • 

this being true according to (19),(20) toT(fi,,M,,/z,i)x(4,4,0,4) 

and (22). 

3) liet us choose f^s * 'J*9 4- ; cl^s m*# C1, U Y^ 0 . 

Then, from a certain m , the following implication takes place: 

(35) A*** SCA^^^^V^A^S StM>,, /t) 9 i . e . 

l&™- &?l *f^-» IV^A**- M> I ^ M. . 

In fact , tbere i s 
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wher€ A > ^ # according to (15) at& E.^ —* # according 

to U7)# Now there i s , similarly as in the previous points, 

Cm * c « Kt I I ^ 11 &, I nyZl'HWvZa**) II . 

By (35) there i s , for the given fm t V ~ * >t£/im'? € 

6 5" C 44,, , * ) . 

According to the assumption, F " ( U ) is bounded on S (Mop, #> ) -

Thus, to ful f i l 3 at), the following is sufficient: 

II gu *lLA + II & IDII SJi «T~ »a 'I K-k K ' ' ^ ~ -* > 

l i < ^ « « ^ i / i i r ^ « 1 i / { i - ^ ) F ^ i i ^ - - ^ 0 , 
but this is true according to (19), (20) for (fa,, /t-,.^., ^ ) .*-
* ( £ , 4 , 4 , 2 > and acoording to (21) for (ft,^^i)^C2f1?2). 
The condition 3/3 ) i s equivalent to the condition 

* - * , 4 - f 4 - . M ~ v W — , . ,4, //<u>;*n • 
2 A ^ *-£L, 

If the preceding conditions are fulfilled, there is 

\ . . - + °» -U-*0,-/-w4»-+-'»Ar.-^« , and therefore 

I - Z T T T S L T — „ At 

To satisfy 3 /& ) , i t suffices to have A ^ By" || —y 0f 

this being true if 

\fr% this ia fulf i l led acoording to (19),(20) for 
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ffv? M9 **», 4 ) m ( 1 f • -f, 0 f f ) , «»^ accurdSjig to (21) for 

( # , * f £ ) m C if 0 , 4 ) . 

Remark A. If we as suae that, for some m , there exists 
_ _ ^ j 

a solution w of the equation IV and that we know some 

its approximation 4F c- the Theorem of Kantorovich gi­

ves us the following assertion: 

Let K be linear bounded and let F have bounded second Fre^-

chet derivative on the ball Wtym*1F(m*\ • V ^ ' j - W )•Let tlie~ 

re exist the linear bounded operator 

Let furthermore 

3) 12..»S_.t-*JJ. *-*%-. top u e 5"C-iP*-••', jtL ) t 

Ғ _ -5 _: __jg__EГ fi.. 

Then the equation III has a solution AA^ for which 
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