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A NOTE ON THE MINIMAX PRINCIPLE FOR K-POSITIVE OPERATORS
Ivo MAREK, Praha

In this note definitions and notation of the paper (4]
will be used. Instead of the assumption () in [4] the norma-
1ity of the cone K will be requested (see [2]),

The purpose of this note is to show that some assumptions
of the papers [3 - 6] can be either weakened or omitted.

Let TelVY] be a K-positive operator which satisfies
at least one of the following two conditions:

(a) T 4is a semi-nonsupport operator (see [7]).

(b) T 1is a u,~positive operator (see [1],p.60).

Let H’c K’ be a K-total set. Then we put for x € K,

X 0,
s
Ko = imf STx, x>
X x'eH’ <X, X’
(X, %> 9 (x")#0
X {Tx, X7
nx = puny S X X 2
x'eMH <X, XD

<X, %> 08 (X))

where 2¢ (X’)= 4 1in the case (a) and 2e(X‘)= (4, ,X’) in
the case (b). ,

Definition. The operator T € [ X1, where & deno-
tes a complexification of Y , is said to have property (S), if
the relations Ae 6 (T), |Al=© (T) , where ©(T) is
the spectral radius of T , imply that A  is a pole of
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RA,T)= (AI-T)

Thearem l. Assume that
(1) Kec Y= K- K 1is a normal cone.
(11) H'ec K' c VY’ is a K~total set.
(i14) T e [ Y] has property (S).
(iv) At least one of the conditions (a) and (b) is fulfilled.

Then it holds:
L @(T)= min 2%= mac n, .

X a0 X#+0

2, There are a proper vector X, € K and a proper linear
form .x; € K’ of the operator T which have the following
properties. The vector x, is a nonsupport element of the co-
ne K (see [7]), the linear form x, is strictly positive (see
[2]). Moreover, the relations 4 =» Te, € K, Y=uTy’,
g’ € K’ imply that a4 =eX, and g¢’'=c'x, Wwith some
constants ¢ and ¢’ o
3. Every extremal element 2z with resp‘ect to the operator T
(i.e. either A% = P(T) or o= ©(T) ) has the form

%=Cx°-

Hote. This theorem shows that the assumptions

(¢) T d4s a strict nonsupport operator (see [7]),

(@) T is a uniformly u, -positive operator (see [6]),
can be omitted in the main theorem of the paper [5].

The assumption (¢) in [ 3]Jcan be replaced by assumption
(a) and the assumption (a) in [4, 6] by assumption (b). Simul-
taneously with these alterations some other assertions hold

under the corresponding replacementa of the assumptions. A ty-



pical example is the generalized Stein~Rosenberg theorem (see
[ 3, 61) which can be formlated as follows:
Theorem 2. If we assume that
(ct) the operator T € [ Y] has property (S),
(B) in the expression B = L + U , the operators L and
WU € [Y] are K-positive and U =* &,
() the operator H = (I - L)' has in K a proper vector
which corresponds to the spectral radius @ (H),
(d") the operator (I - B) 'y has property (S),
{€) the operator B satisfies at least one of the conditions
(a) and (b), ’
then one of the three following conditions holds:
l<p(H)<pP(BY< 1,

o (H) >0 (B)> 1 .

Proof of theorem l. Only the assertion 3 is to be proved.

Assume that gz 1s an extremal element with respect to the
operator T . Let s, = © (T). The case rn* = ©(T) can
be investigated analogously. Let = Tx ~©=z # ¢, where

gO=;O(T').Then re K and Py + o, where
n

P= tim L S rpT)r* T+

nyoo M

(see [5)). If X € K, X # o0, then Px is a proper vec-
tor of T corresponding to EP(T): TPXx = (T) P X

q .
(see [5]1). Let x| =T T’'Xx5 s Xg # 0 .  The functional

X, 1s strictly positive (see [7] and [5] ). Consequently,

we have
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04 Pv, x> = <(T-p1) P2, x.>=10

and this contradicts the relation 2~ s ¢-. The proof is

completed.
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