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8,2 (1967)

A REMARK ON THE THEORY OF LATTICE POINT'S IN ELLIPSOIDS
Bretislav NOVAK, Praha

l, Let £ be an integer 2 2 . Let & (w; ) =
c‘;" Qpy sy, Ay be a positive deofinite quadratic form who=-
se discriminant is denoted by D and let O be the form
conjugated with @ . Let Mj;, & and «x; be real numbers,
My >0(4=4,2,...,7).The numbers m and m (supplied
with indices if convenient) are always integers. The letter
¢ denotes (various) positive constants depending at most
from &, My, &; and a; (3=1,2,...,2).(Positive con-
stants may depend e.gs Oon & , then we write ¢ (&) .)

For a natural ft, let @, be the 4o ~dimensional Le-
beague measure, By an integral we mean the (absolutely conver-

gent) Lebesgue integral, we put

=
f'f-(s)ds--t.ff(a.-o-it)d.t .
a-i»

tfor a € E, (provided the integral on the left side exists).
The symbols 0 and L are used with regard to the limiting

process for X — + 00 and the constants involved are of the
"type ¢ ". A << B means |lAlg cB, If A<<B and B« A

we write A X B .

The present remark is devoted to the study of certain
properties of the function

(6D I A(.x)-A(.x,ac,)-Zcm'#' ’
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where the summation runs over all systems 4,, «, ’ ee s Ay
of real numbers, satisfying & («;) <€ X and

aj = by (mod Mj) for F =12, " Put

E E gt b

g
O R Frwrwwy

Pl

("= 1 if all numbers o, M,, , M,,.0., % My are inte-
gers, o = 0 otherwise). Landau proved ([2] pp.54 and 74)

(2) P(.x).}‘»‘(ac‘;«wj)==,A\c‘xl.,,;,")_V(.,('.‘,%)== 0(#-‘%)
and, if A(x)# 0 , |
(3) Pix) =L (x5 .

Clearly, without loss of generality, we are able to assume

0 =2 <M; amd 0“"'<%i (Gm 1,2, ).

2. Denoting = <0, )x <O ) x... %<0, ) | Let ue

examine the function

2
4 [IAGOI A da,. da, = [IP(x) Tda,da,.. de, ,
»n 4

where 4 is a natural number {( 0"+ 1 in 7 only for aye0,
1’-=4’ 2,..,’/‘ )o

Llemma 1.
. . . )
(5) [P, da wdaegt—F 1,
m T 2 ".' Mi
where the summation runs over all systems
(6) mﬁ“’ 'nu’-u’ ”‘-“' ’ m“‘, mﬁk’”', mﬂb (k" 4, 2’ -u’ﬁ.)
-satisfying

K1) B (mjp M+ b V16 x|, Q(miaMj+ly )& X (Re1,2,..,0)
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ia1,2,.,.,R).
amd ¢-£4 Mit';% men  (#T2, .

(8) -

Proof: Clearly,

oy T d e ey - AE, =
[1AGOM A dy . ddn= [ AT AT T 4T
m

() - £
29r¢ . M. (mya - My, )
- = iﬂ ??,:Q’ M‘Azu Mk Al da,da ... dd;_ .

(the summation runs. over all systems (6) satisfying (7)). Sin-
ce for an integer m and M > 0 1t holds that

* ik Mm 0 fa m 4+ 0
fe’ du = 4 for m = 0
: Gl

we can infer immediately from (9) the assertion of the lemma.
Lemng 2. Let m» and 4 be natural numbers, and let €%
be a measurable set with (¢, (L )<+ 0. Let 4 be a me-

surable function on YL .” Then

v 1)
n 4 1$¢¢) 1 (et)
(10) Vdf‘“ﬁ, dt < veal pupy “n,
and
. Pt = Ceup 1£CE)1 .
an e VIF@FAE = b

Proof: We may assume (,, (%4)> 0. Put
T = wiag aup 1£04)1 .
If T=+ 00 (10) holds. Let T< T’< + ao. We have

;;---M- . mupy | = ) [£(¢)1= onf £c)l .
te el %M ! bectr m-#
(“(5)00



)l £ T
f.”g‘ﬁ" [€C¢)] T

for a suitable subset ¢ of YL such that (««"Cdﬂ') =0

and thus
v Z’Hwﬁdt = T'V, (L) .

As T’ is arbitrary, (10) follows. Let T > 0 (otherwise (10)
implics (11)) and 0 < T/ < T . Putting

$={te; I4ct))1 2T’}

we have necessarily (g, (%) > 0 and further

V? TFCOTdE » TV T8 .
o

From this and (10) using ‘the limit for f2 —> + and having
in view that T’ is arbitrary ( T'< T ), we obtain (11).
Theorem 1. %
Proof: Let q be a natural number. Denoting S (X,7)
the right hand side in (5) we infer from lemmas 1 and 2 (A(X)

is continuous in 927 and thus measurable)

2p
. - . - & .
wai aup 1A ()] Mﬁmw(xnﬁm\/.{mfx)"d%@ 4z

i.e,
(12) vl pup | P(X) = tm V;C\x,p).
: L 44 pr+o
Putting
B(x) =+ A(x;0,0,...,0)
it is
SCx, ) << B (x) .
But, by (2)

B(x) X .;(* .
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Therefore

\ .
(13) Vsix, n) << x’f .

Note that

$1,2,.., %
holds for (4tg, 443,..., Ay ) € E, and hence

S(x,nd)>»> = 1,

where the summation runs over all systems (6) satisfying (8)
and
Im;e Mg+ 4; | << VX, Imig M+ Ly | <<Vix
(h=1,2,..00,321,2,...,k ). This implies
Slx,n)>» =1,
where the summation runs over all systems (6) satisfying (8)
and
’ 'ﬂna'h, << \/3(-, Imdh ’<< WX—

hal,2y gy d=1r2,y00., D

Put
R(w)= = 1
for 44 > 0 | where the summation runs over allm,,m,,...
oy 'm'zpq for which
Imyg s w (G=1,2,.., 2pn-1)
and

ap-1 :
|§ nn?'Is V7V
ie 1

We shall examine the function R (44 ). Clearly, we may
consider only natural A4 ., Putting

“l}(d ) = i ezw&am

s -4

- 22 -



fora:e<0,4),i.e..
An (24 + 1)
24 +1 for = 0,1 ,

it is easily seen that

1 ) 1
Rw)s S [002 () § %™ s J o Fyda
0

and thus

. 2
n(w>=/(-ﬂ§:—‘5,—;¢’—’—ﬁ) ot

°

But , by lemma 2, we have

, - . AN QUL L | o 2ac+1 .
plry VRO Y= aad sun | 0500

Finally, we (}btaimthe relation
lad 2
. x
Lm VS, ) >> (bm V R(cVX)) >> a(& )
P -rtoo hriw

proving together with (13) and (12) the theorem.

Comparing the result with (2) we can see a remarkable
non-uniformity of this estimation on P(x ). If we confine
ourselves to the case of aje , M; , &4 (4,k= 1,2,..., 1)
being integers, the comparison becomes still more surprising.
In [3] the following theorem is stated under these assumptions

.and for n > 5 :

There exists a set ¥ c¢ ®t, (%, (&) = 0 such that
Plx;aty) = 0Cx¥*®)

for (d,,d,,..., %, )6 W -5 and for every £ > 0
(the constants in [ -relation are of type ¢ (&) ).

‘Nevertheless, by the theorem 1 we have
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L3
IPCx; @y )] >3 X2,
(), @y yocr Kp ) & 2L -0

We emphasize, for next purposes, an imporant consequence

of lemma 1l (see [3] theorem 4):

Theorem 2.
Acx; 0,0,.,0)
(14) ”{1 Pex ) day day.. dety =~ — -

3. Kendall [1) examined similar expressions with regard
to Ly, 4,..., 4 under assumption &, = A, =.. = =,
M;=aM,=..= M, , especially for the case of a circle,
In the following we shall prove his result in general form
and in a different way on the basis of the identity of landau.
Let D€ A, <2 <... (0<Ay;<A;<...) be the sequen~
ce of all numbers of the form & (m; My+4y;) (67(-,”5,‘;.'-@,- )>0)

for all integers m,, m,, -, M, . Let

f . (mg Mg+ by )
A e = €1 1T
AP
i, -nlrm ” Z
(a.:,- Z -e”"'f" 4 ' ? a’w= 1 ) ?

where the summation runs over all systems 7, , My,..., M,
satisfying O (m; Mg+ 4;)= 2, (afﬁ;‘“'i )= A, ). Denote

M =<0,MIXx<OM)x.. <0, My ) .

Theoren 3.
} = e 2TTVALX) )
2 s X v / - .
(15) ’,:I'IP(.x)l db;db,..dl, .'D;'E—W_l;_"‘g a'm_:’f___“” o

- e o

2) I, is the Bessel function.



Proof: Put

v Ve —1— -2
(1) Ap (X; @5 )= o) Eua., (x-a, )

f 1+ "";',‘5 ’

()2 A (X;a5)-Y (x;95)
an x e )e 57 M7r,(z+?”)d',5 X3y )= A, (X 5)-Y (X3 8y

for'peE,,p 20 (tis A,~ A, Y=V, B=P JA (dy-
94'4 (x) etc.) Because

0(s)= fa,,,e""" W (e i

for s complex such that Res > 0 and, clearly,

ats™
1 %8 (s)
A (X).’”‘a'f'~ _;W‘_ ds
-1

@aeé,,asl, p>0)

we obtain
(18) P (x)= ikt 3 a —J-L—W—J re (27TV 2%, X))
4 D1, Mj w® A L

for @> é—" (similarly as Landau [2] pp.258=264 for inte-

ger © > a"- )e
The series on the right hand side is moreover abgolute-

ly and uniformly convergent for (&y,4;,-,4, )€ 7 (still
for @ > § ). It implies

2T/ %
(19)’{P,,(x, VB (xy-g)d by il dbeW*" ..—ﬂ'—Ta"‘w

because of

,/d/ %dkdt‘ d},-{z‘d"

&

My for m = m

for m s m
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and the interchangeability of summation and integration.
The right hand side of (129) is a continuous function of
the variable @ for 2 O (in the point O we mean the
one-sided continuity) and holomorphic with respect to
in the half-plane Rep > 0 . Ve shall investigate the
left side. Let & be the set of all (&y,4,..., ¥, )€ %
such that @ (m; M;+4y )= x for suitable m,,My,..-» My .
Clearly @y (&)= 0. From (16) and (17) it follows that
the function F;,(.x H 4‘ ) and conclusively the integrand
in (19) is continuous in the domain @ 2 ¢ and holomorph-
ic with respect to @ in the half-plane Rep>0 for
(&;, £3,., )€ -, Using the Lebesgue theorenwe thus
obtain that the function (P, = Rep, P, = /mp)

Flp)= Flp,+ip,) = f R, (x; ;) !;(x-.-g».)dl;dﬂ;u-dé;
is continuous for and her derivatives

a7F( fa&{x.a'z)@(.x; c,)‘ﬂ .. as,,

OFE) IR RXizaP, y 4y .. 28,
ap, '{ o0, T *

are continuous for ©, > 0. Since the Cauchy-Riemann condi-

tions hold (almost everywhere in 27 )for the integrand in
(19) they hold for the function F  and thus the left side
in (19) is holomorphic with respect to P in the half-plane
Re p > 0, Because (19) is proved for p € E,, o > %
we can, using the theorem of uniqueness, state that (19)
holds in the half-plane R€ @ >0 and we obtah (15) usin

the limiting process © — 0+ .

4. Applying (2) to (14) and the asymptotic properties

of Bessel functions to (15) we are ready to state
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Lemmg 3. ‘
(20) L IPCxO Pty dety .. A 8 x
L4

(21) flP(.x)lzd&dlr dly = O0x 4) f/P(.x)l’db dy,...d4-
SN2 3 3
Analogously as Kendall did in [1], we can now derive
from (20) and (21) a series results using the well- nown lem-
ma (see [4],p.345):
Lemma 4. Let YL c¢ E, Dbe a measurable set and let
f, (t) (m=1,2,...) be a function measurable on ¢ .

Let the series «
S [t ¢r)*de
mns1 O

be convergent. Then there exists a set & c €L, («y (4 )= 4

such that
tm f, (t) =0

N~y + ®
forany t e €A - X .
If we put in this lemma Y = DL op ¢ = 2 ,

b (@) @y @, 0= Plx,) ¥ 270X,

w et

'Fn (‘0?;'057"‘1‘6;; )= P(‘x»)‘xm« -2'.1("(4» )

respectively, wherer A (X ) is a positive function of X

and {a( ? is an increasing sequence of positive real numbers,

& _1
iy xw v, £ s <+

we can obtain from (20) and (21) by suitable choice of A ()
and {X, 3 the following results:




Theoren 4. a) If an increasing sequence {X, § of posi=

tive real numbers has a zero exponent of convergence then

fes &t

(22) P(x 0= 00X (PCx)w00x, ', resp. )

"

almost everywhere in #L ( 2 resp.) for m — +co0 and for
any & >0 (the consteﬂte :I.n\ O -relations are ¢ (€,{X,1 ).

b) If A(X) is an arbitrary increasing positive func-
tion, xﬁu‘r*n“a(.x) =+ 00,it ia

» [P(X),_ox ( lim nt 1 PCX)] = 0, resp.)

AN SR T X% o X 7A(x)
almost everywhere in ¢ ( 9% resp.).

¢) If the exponent of convergence of the sequence -11 ?
Agyeer 18 29 it s

fry+E ) ,

(23) P(x)= 0(x
almost everywhere in @ for any € > 0 (the constants in
0 -relation are ¢ (E) ). _

Proof: The assertions a) and b) are obvious. Let & > 0O
be en erbitrary real number. Putting X, <, and A (X) =
=x7** e obtain

ihr-rg
P(a,)=0C2, )
almost everywhere in 97¢ (form — + c0 ). Because = 1
in 9! only for @je 0 (4=1,2,5.,2) we have also

Pla )= ACA )= 0027 7"

”

almost everywhere in M (for m ~+ + @ )and thus (A(X)s"
eP(x)=A(D, ) for Ay £ X <2,,,, = 0)



Plx)= O(xF*T*e)

-almost everywhere in 497 ,i.e. (23).

A comparison of the two results (22) indicates that pos-
sible definitiveness of the exponert in (3) may be due to the
nature of the system &, 4,..., &% -
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