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Comment at iones Mathematicae Universitatis Carolinae 

8,2 (1967) 

COORDINATIZATION OF PARALLEL SYSTQfiS, II x ) 

Vtlclav HAVEL, Brno 

In this part we ahall use ternary halfgroupoids for the 

coordinatization of certain "parallel sy9tems". Further we 

3hall investigate as a special case some systems very closed 

to pseudo planes in the sense of Sandler ([3],p.301). 

1. In the following, it is neces3ary to distinguish be­

tween partitions in a set and partitions on a set: A. parti­

tion in (on) a nonempty set S is a nonempty set of nonemp­

ty subset3 in S which are pairwise diajoint (which are pair-

wise disjoint and cover S ). 

Now we generalize somewhat the definition of a parallel 

system used in Part I: By a "parallel 8.v3tem" 3* we shall 

mean a triplet C fl , X 7 I ) where (i) fl is a nonempty 

set of elements called the points- (ii) X is a nonempty 

set of some nonempty subsets in jB called the lineg and 

(iii) II is a partition on X such that each member of 

/ is a partition in # . 

2. Two parallel systems Pm Cfi,oC7 0), 9'* CJ1',£',/') J 

are said to be isomorphic if there is a bijective mapping 

x) Part I: Comment.Math.Univ.Carolinae 7,3(1966),pp.325-333 
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fi $ —# jB' such that 

Cl) p I € X ' for each t €. <£ , and 

(2) p I f pm belong to the same member of U i f 

t , m belong to the same member of / . 

3 . A ternary half^roupoid T i s defined as a couple 

CS7 X ) where S i s a nonempty se t and *X a mapping of 

a nonempty se t 3hm X fi. S x S x S into S . 

For 3km X • $ x S x S we get a ternary ^roupqtfl ( c a l ­

led a l s o a ternary r i n g ) . 

Denote by (Sfom X )±J and (3hm X )j^ the pro­

jec t ion of Stem, X obtained by leaving only the i - t h and 

the :j-th component or leaving only the k-th component respec­

t i v e l y . For each ( 44, 7 ir ) e ( Stem, x)%$ , define 

L (AA,9 v) as a nonempty se t { (x, <y.) \ <y. m x (X, 44,7 v* )} 7 

and ,for each 44, € (Stem, X )2 , define L (44,) as a set 

consis t ing of members L (AA,7 *W ) where V runs over a l l 

values auch that (44,,'V ) e (Stem, x ) % $ * 

4 . We sha l l use two following conditions for a ternary 

halfgroupoid T ** C S 7 -x ) : 

(3 ) X CO,, A4,, 1^ ) m X CO,7 44,f 4%) for (a,7 44,, 1/£ ) , 

Ca,9 AA,7 v% ) € Stem x —» -a; » t% ; 

(4) r Cx7ui7 vj ) m *c Cx7 AA,^ irx ) for (A4n7n^ ) 7 

I C*û , V% ) € C%tem x )1% such ihat {x e S I Cx74ii>vj)e 

e 2 W X } m {x € S I Cxf4cx7 15 ) e Stem x } , identically 

fa X i - a t . C ^ , ^ ) * (44,%71T1) . 
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5. Two ternary halfgroupoids T « (SfT), T'a (Sf
fV

f) 

are said to be isomorphic if there i s a bijective mapping 

6" : S —>$' such that 

(5) -CCtfUc, &u,9 6'v)l(x,u,fv) € Stem, ~c ? - Sbm, t ' , 

(6) TS'Ctf'.Xjd.a., ^tr-) = €<% (xfufv) for a i l (M9u,f4r)€ 

€. 5krtrt t̂  . 

6. Xet T « ( S , r ) be a ternary halfgroupoid sa­

tisfying (3) and (4). Set fi m U L (*L9 <tr ) ? 
(*4,fy)e (Stem, t ) x t 

£*iL(u9v)\(u,,v)e(3bmr}[ J B*aJ*{L(u)l<u,eCShm?r)£} 

where, for each M> £ (Stem, *V )z , L(u,) consists of 

LCcc- v ) such that CAA,9 <V ) e (Sknn ^\3 - By (3),each 

LC>u.) consists of mutually disjoint nonempty members. By 

(4), any two L (^, IK, ) , L (AJU^ , 1£ ) with 6ti f 9 Vj ) , 

(U>Z9V% ) 6 (<2kwt f )2-3 ,^ f # ^ , must be distinct so that 

{L(U)\M,£ (Shm, f )z J i s a partition on X .Thus, 

f ?* * X , / ) is a parallel system (called associated to T). 

Obviously, the parallel system associated to T is determi­

ned canonically. 

Define y (a, ) m -f Oc, 4j») € 3 x S 1 .x ** a, ? > 

X (a,)*{(x9'y.)eSxS\y*a} for all a, c S , and no­
tice that, in the preceding, i t must hold exvtot, (y(a,)n 

n I ) < 1 for al l a €. S and al l t e X . 

7. Let #> » C # , X , / ) be a parallel system. Let 

there exist a set S and an injective mapping cC : Jl-y $ x S 

such that 
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(7) CA*J& ( Y ( a ) o ' f l c D i 7 tor jii o,e S, I e X , 

(8) &a*ocL /I £ eo*<£ S • 

Choose an infective mapping (&'•// —+ S and, for each 

L € / , an injective mapping 'JJ ; L —* S # Finally, de­

fine a mapping tr of a certain subset of 5 -x S x S 

intO S as fOllOWS: Ijf. m t (X, 4JL, <V ) ŝs=--» oz1(x, ry. ) m 

» P « T|ff v where fi L ****>*/&// at* v e 1£ L . 

By the preceding assumptions, "tr must be single-valued and 

i s well defined. So T=* ( S , tf ) i s a ternary halfgroupoid 

(cal led associated; to JP with respect to <*-, /3 > 3X ) . 

8 . Let T » ( S ? t ) be a ternary halfgroupoid s a t i s ­

fying (3) and (4 ) . Let P m ($ , X , / ) by it® associa­

ted paral le l system. The next conditions are equivalent: 

(9 ) Each L 6 / i s a part i t ion on J2 • 

(9 ) The equation -T (a>7 c , ir ) » «#- has a unique 

so lut ion v e (3krm, t: ) 3 for any AJU 6 (2l<ym ^)z and 

( a , X* ) 6 Jl . 

For the proof i t suf f ices to note that (9 2 ) 8ays prec i se ly 

that , in every 1L e / fthere i s exactly one l ine of !P 

passing through any point of ir • 

9. A "projective" pseudo-plane can be defined (cf . [3>J, 

p.301) as a t r i p l e t ( jB , X , I ) where % f X are seta 

(of points and l i n e s , respect ively) and I i s an incidence 

re la t ion ( i . g . I & V x X s . t . A± I a ^ for i,#.m 

* ' 4 , .2 implies A1 «• A 2 or a , c a ,̂ ) such that 

there ex i s t points f> 4» P and l i n e s l f 4« l^ with 



% * % 1 S > $ 1 l2
 f o r w h i c h t h e f°lla*in& condi­

tions hold: ( i) For any point P such that p J t f or 

p | 1 and any point Q, 4s P there is a unique line 

t with P, 0, I I . ( i i ) For any line t such that 

P I t or P i t and any line srn with E <? W or 

P Z <m there i s a unique point P with P i t , "m . 

( i i i ) There are four points no three of which are incident 

with the same l ine. - If T*, and a l l points incident with 

i.j are deleted then one obtains an "affine" pseudo-plane. 

We shall show that such affine pseudo--planes can be intro­

duced in another way. 

10. A parallel system $> ** ( P , «£ , II ) will be called 

an almost pseudo-plane if i t satisf ies (9^) and 

(10) yi « S x S for a set S containing at least two 

distinct elements; 

(IX,) Y (a) 6 oC for each a € S j x ) 

(112)' X (a ) 6 <£ for each a € S ; 

(12,) y « iY(a) \a e S} € II; 

(122) X = iX(a) \ a e $} e 1/ ; 
(13,,) cwui ( y(a ) o l ) » 4 f or a l l a & S, t €oC \ Y; 

(132) <uux£ C X (a ) n t ) a 4 for a l l a e S, t e <£ \ X ; 

(14) there is a line Y e Y such that ccuul (Ys> I ) ** 1 

for each I € <C N. y and 

x) Cf. the definition of yCa) and X (a) in Nr.6. 



(15) there is Directive mapping (i : / V { V / - * $ witji 

(IX m 0 where 0 € S i s determined by y£0> -»' Xv . 
v 

11. Let P «* (p 9 X j, / ) be an almost pseudo-pla­

ne. Take a parallel system i P # * ^# , <£ \ V , / \ f V / ) and 

choose oC » <u£ , /S as in Nr.10 and, for every L € / \ 

M V I , ^ ' L—> S determined by ^ L to be equal 

to the second component of the common point of 17 Y (the 

existence of such a point i s guaranteed by (fy ) and (14))» Let 

T «• (S, t? ) be the ternary groupoid associated to P with 

respect to ai,7 / 3 , ^ . It can be verified that I satisfies 

the conditions coutoL S >. Z 7 (4) and 

(16) Jtf (x7 Q7v) - K (0,4i7v)** v for al l X, -tc, v e S *7 

(17) for any x7 U,, t r € S there is a unique tr- € S 

such that ^. « T C -X, ^6, tr > ? 

(18) for any ^, 7 V € S and AA. e S ^ iOJ there is a 

unique * e S such that <Q * t ( . x , - a , ir ) i 

iP becomes a pseudo-plane if and only if 

(19,-) any P e V and any fl € P ^ Y are contained in 

exactly one common line of tP # 

(19,|) i s equivalent with i t s algebraic counterpart ; 

(19|) for any x m S S i 0 J and %7 ve S there i s 

a unique X6 € S such that <y. •* 7Z C x , <u>7 tr ) * 

Conversely, it may be proved that for a ternary groupoid 

T*» (S7t?) satisfying taxxl S £L 1 9 (4),(16),(17),(18) 

or cwcd $ > £ >(4), (l6).t (17), (18), (19), the associated parallel 

system (p , «C , fl ) leads to the parallel system f£?,<-C^ V, 

// v i V } ) which i s an almost pseudo-plan? or a pseudo-pls> 

ne respectively* 
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So the preceding two types of ternary groupoida ma/ 

be termed as ajjMfffr peeu^Q-plar^r and gae^o-p^nar respec­

tively. 

Note that the pseudo-planar ternary groupoida have a 

mora general structure as "pseudoternaries" (13J,p.303) be­

cause the existence of unit element is not required. 

12. Let {P**(f27<£,7tf) be an almost pseudo-

plane. Suppose that it contains a diagonal line cL charac­

terised by 

(20) d » i C X , ^ > i * - ^ ? • 

Let T be associated to i/** as in Nr.ll . Then, by the im­

mediate translation from the geometric into the algebraic 

language (and conversely), i t may be shown that (21^ )<—>(21 ) 

where: 

(2^ ) Let A<t , Az , A% , b1 , bz , B3 be points satisfy­

ing a) A1 * (Of 0 ) 9 b) there are mutually distinct lines 

hfh*h*V s u c h t t a t A1* Bf e \ '> A2 •> h £ h > 
A* > ^ c % > c^ there are lines CL% , -&£ from the sa­

me member of / auch that AtJ, A% e cu \ fi-, Bz € -̂ftj ; 

d) there are lines Q>z , -̂ J belonging together with oL to 

the same member of / such that Ai , A% e o^ and Bt ? 

&s € -*£̂  and e) AA , A^ l i e on the same line of X i 

Then &2 , B3 l i e on the same line of X • 

(21£) % (% (x,u.f 0), e,t/- ) m <v (X, HA*, <v> ) f o r a l l 

Xf4&7 nr € S where e la determined by cL € L (e) • 

(21̂ ..) la called the -Llnaarlty condition. Cf. theorem 12 In [3J, 

p.311 where moreover (191) la postulated. The derived compoai-
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t iona •+• , • (defined by * 4- v - T. (*, -e f ^ ) , 

X • >u, m t.(.V- <«,., tr- ) respect ive ly) are aseoci»tiv# i f 

and only i f the correaponding Reidemeister configuration con­

d i t ions known from the web theory are s a t i s f i e d . There i s a 

very closed connection between 4-webs (£1J,pp.61-63) and 

pweudo-planes: pseudo-planes are only certain natural "exten­

sions" of 4-webs. 

13* The construction of almost pseudo-planar ternary^ 

groupoids with l inear i ty cond it ion can be given as fo l lows: 

Take a loop ^ s (S, +- ) with ccutcL S 2: Z and choose 

an in jec t ive mapping 3e ; S \ { 0 } - > $* where & 

denotes the set of a l l permutations of S, reproducing the 

element 0 • Further, l e t ae 0 be the mapping which sends 

each Q, e S onto 0 . Now define the mult ip l icat ion • by 

X •JU/ ss(ee 4A*)X for a l l vX; ^ 6 S and the ternary com­

pos i t ion ' T : S x S x S — * ' S by t(x74ju,ir )-».x <u,+ v 

for a l l X, 44,, -v e S . tfhen each of the cond itions ( 4 ) , 

( 1 6 ) , ( 1 7 ) , (18) i s f u l f i l l e d and the obtained ternary groupoid 

T * (S, x ) must be almost pseudo-planar. (Cf.the general 

principle for the construction of double g#$etp0S4a m&® a g i ­

ven groupoid given in T4J,pp.67-68). 

In part icular, i f cxtkaL S -» 3 then there are 

only two diat inct permutations reproducing 0 and the re su l ­

t ing T i s necessari ly planar ( i . e . , t h e associated para l l e l 

system leads to an affine plane) . I f ccucd S > 3 then i t 

i s po39ible t o choose 9t i n 9uch a way that &e (S \ < 0 } ) 

doea not act simply tranai t ive ly on S N { 0 } . Thu3 there 



ex i s t almost pseudo^planar te^n6.ry grosipoiaB w.hioh ar* not 

pseudo-planar* 

14 . Be given ternary hal^grouf>oids T » ( S , t? > and 

T / •* C S ' , X' ) with associated paral le l systems (P m 

~ ( # -oC, / / ) and i P ' * ( £ ' , o C ' ; / ' ) r e spec t ive ly . 

Any isomorphism between T and T' induces an isomorph­

ism between & and fr' . 

Proof. Let & : S —> S' be a b i j ec t ive mapping deter­

mining the given isomorphism between 3? and T' • Let I ** 

- tCXyif) \<ty**t:Cx7u,,v)} for (44,, * / - )e CSkym ^ ) 2 3 • 

I f ( \ x , / y . ) e I then, by (5) and ( 6 ) , 6y. m t'CGx^AA,, &w) 

and by the b i j e c t i v i t y of a', & I e <C' and ( l ) i s f u l ­

f i l l e d . Similarly for (2 ) . 

We f i n i s h t h i s paper with one remark about a f f i n i t i e s 

of para l le l systems. An isomorphism of a para l l e l system 

<P. C£ , oC , // ) onto 3* may be called an a f f i n i t y of (P. 

A trans lat ion of P i s an a f f i n i t y 61 of t / having the 

following property: t and & Z belong to the same member 

of / for each I e <£> . A trans lat ion 6* of J^ may be 

termed central i f there i s a. C e // such that 6fL -» 1> 

for a l l I € C . Some propert ies of central trans lat ions of 

groups with a par t i t i on are found in [2J ,pp .94-98 and 158-160. 

Certain s imilar r e s u l t s on central translat ions of groupoids 

with a p a r a l l e l i s a b l e par t i t i on are contained in £5J , but no 

r e s u l t s about central translat ions of general p a r a l l e l systerns 

are known to the author. 
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