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Commentationes Mathematicae Universitatis Carolinae

8,2 (1967)

THE ELLIPTIC DIFFERENTIAL OPERATORS
Bohumil CENKL, Praha

l. Sufficient conditions for vanishing of the cohomo-
logy groups, of a complex compact manifold M , with values
in the sheaf of germs of holomorphic sections of a complex
line bundle over M were given by K.Kodaira [4]. The condi-
tions are formulated in terms of the characteristic class of
a complex line bundle over M ., In this paper a generaliza-
tion of this problem is solved for a regular elliptic system
of linear partial differential equations on a compact diffe=-
rentiable manifold M . The condition for vanishing of the
cohomology groups H" (M, @),x > 0 , @ being the
sheaf of germs of solutions of a homogeneous regular ellip—-
tic system D is stated in terms of sufficient positivity
of the curvature of the operator D .

The Spencer's resolution of @& by sheaves of germs of
Jet forms C"’, exactness of which is assumed, can be simpli-

fied in some sense. We get the so-called " /3 =resolution

0— @—)E-&E-@-}....&éﬂ_‘q 0 ,

where B are differential forms and BD, 1is a first or-
der differential operator. This resolution is equivalent to

the original Speneer's resolution. Sufficient conditions
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for vanishing of H* (M, @) , x >0 are then given
in terms of the 3 -sequence.

Considering the manifold M adand the respective complex
analytic vector bundles we get, on the basis of the Atiyah-
Singer index theorem and the vanishing theorem, relation be-
tween the dimension of the space of global solutions of the
homogeneous system and the topological index of some ellip-
tic differential operator associated to the origiml operator.

The exactness of the resolutions of & is closely
related to the existence problem for over-determined systems
of elliptic differential equations, Db = f (see [6]),

The exactness itself can be studied in connection with a lo-
cal D=Neumann problem [8},[9). The fundamental estimate for
the Dirichlet integral Q (o, )= IDult+1D%uli* + haul?

(u 4s a sectionof C* , # > 0 ) is required for the sol-
vability of the D~Neumann problem for a finite submanifold M
of & C®-panifold M . The curvature of the operator D
allows to give an explicit expression for the Dirichlet inte- '
gral, and also some sufficient conditions for vanishing of the
cohomology groupe M* =Z (C*) / D ( €C**") in positi-
ve degrees. Here Z (C*) 1is the kernel of the map D :
C— ,where C"™ denotes the space of sections of C*
over M which are smooth ﬁp to the boundary of M,

Defails and complete proofs will be given in the paper "Va-
nishing theorem for an elliptic differential operator” in the
Pacific J.Math. - This work was done during the author’s stay
at Stanford University. -

2, We consider only manifolds, vector bundles and maps of
these objects which are "smoéth", i.e. C® , The sheaf of
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germs of smooth sections of a vector bundle E will be deno~-
ted by E . Let M be an n~dimensional manifold amd § ,
P be vector bundles of dimensions m, £ respectively, o~
ver M . We denote by J(“_ (E)Y—-> M the bundle of w -
jets of E . There is the natural map 4, : E — Ju (E) ,
which to a section 8 of E and a point x ¢ M associa-
tes the @c-Jet of 8 at x . Denoting by S“(T*) the
(« =th symetric product we see that E® S (T*) is
the kernel of the natural projection Ir: J{““ (E)—> “’t“ (E).
Let us denote E* = E @ A® T* for any vector bundle
E . There exists a first order differential operator
D: J‘“" (E) — J(l (E) such that for any smooth
function £ on M and 6 € J;m (E) holds
D¢t =dfexr6c + fD6 . .

And D6 = 0 if and only if 6 = g, A for some s e § .
The operator D extends uniquely to a "derivation"
D: J:“ (E)— J";" CE) . Then D2? = (. The operator D
gives rise to the formal differential o . The operator o is
defined in such a way that the following diagram is commutative.

0—~E @S (TN @ N T*— U, (E)e AT*S | (E)o A T*—0
(1) l-d‘ ln l D

0—> E@ S (T @A T*— U (E)@ A T*T Uor(E)OA T20

Locally in the coordinate neighborhood U on M , with

coordinates x = (x?, ..., X™ ) a local section 0 €
€ J‘:ﬂ (E) over U can be expressed as follows: 6 =
={6;,'Q' ) (u.+1 3, Wherei=(g,,,...,2_~,u.,g“) is
an ordered n-tuple of non-negative integers @, , Igl= g +--
ot ny 6;= -fd’: 116 4 6 m 3 , where
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s_ 4 i
69: n! 2 6%""""'!:

The formal differential o of & is given by
( de), Z dx*A 6

’
2+ 1y

and the operator D applied to 6 has the form D6 =
A sheaf map D: E — F

, Which is in trivializa-
tions of the bundles

E and F over the coordinate neigh-
borhood U given by the formula

oC
D 'Ingy,a' D% , o= (oty,eerrox, ) ,
«_ alocl

T (Bx)Ee,, . (Ox™)®n ) b € ElU a

y & are (L xm)-mat-

rix-valued functions, is said to be a differential operator of

order “o from E to F . There exists a unique bundle map

Pu,+» o foreach ¥ = 0 , which makes the diagram

P(“,q-v R JQ(F)

Tty +2
) (u.,+v ,{ 2)9 3"\’
E

2

y £

commutative. The operator .'0,,

prolongation of D .

is the so-called % =th

Definition l. A regular system of partial differential equa-

tions of order, @, given by o on M is the kernel Reeq
of the map ;b‘u_, in the exact sequence
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— — e,
0 R(u., Jf"’a (E) F
if
(1) the Rge. are vector bundles over M ,
(ii) the map T : RC“'*‘Y_—) R(u is surjective for
- .
— o .
(U/ = (Ur
A smooth section f € E  “such that gy, f € R
is called a solution of the system R(a—a .
If the conditions (i) and (ii) are satisfied we speak

about the regular operator /) , and we shall study such ope-

rators only.

To the differential operator &) and any § € T: ,
x € M, § #0 there is defined the symbol 6 (D, f):
E.x b d F.x of 2) as the composed map

E,— E,® S% (T*) — J, () L ¢ .
Locally for some € € E.x , We have

6(2,§)e = 3 a (x)§% .

"'"“‘o
The exact sequence

0— g — RE T Jr  (E)— 0
defines for 2 «, the vector bundles g,:; , &=
=0,4,..-,m’, (ﬁb%(ao .

The sequence

J

(3)0—~g,, <

o
9’191»@-4 cer —> qf: — 0, »v 2 (%o

is not exact in general; but we still have o2 =0

The corresponding cohomology H’“( 9,) is called J ~-cohomo-
logy. The cohomology groups H ™™ (g-) vanish for » =
2o, +1, n=0,12,,,  if and only if the sequence
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(3) is exact.

The system of regular parﬁal differential equations R‘.,,,,
(or the operator 3,.. ) 1s said to be involutive if the se-
quence (3) is exact. The invalutioness defined in this way is

that one used by E.Cartan, as was proved by J.P.Serre [7].

3. Assume that g 2 «, iee. H “* (g) = 0 , and de-
fine the vector bundles

A= {fegn lds=03, C = Re., /A,

for all non-negative integers r . The sections of C:; over
M are called jet-forms. The commutative diagram

) » 5 r > r —_—
0 9’&43 Rg-fz Rgn 0

PR
3 R +4 > (21 12 > bed —
0 A@LH Rgﬂ _(.:.f'_- 0
defines the first-order operator D’: R*

Y .
ey C‘u which

factors thrbugh c; s 80 that we have the first order diffe-

rential operator D : C; — C';!” such that D° = Dp.
We get then the Spencer’s resolution

L D 1 D D mn
(4) 0—-'9———'0':5—-’, w e = c¢T — 0

the exactness of which is a non-trivial problem discussed later.
Straightforward calculation gives an explicit description of
”
c‘“_ . .
L3
M. Bach element L € C w2 w,, £ 2 0 canbe
represented as a pair (6, ) ¢ R; ® A":: such that

6= e, §=d’p for some ele?ént So' e R:," , and
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Du=(d6-§,-dg); D?-0.
If the adjoint of the operator D (with respect to some met-
ric) is to be considered it is useful to give representation
of the elements of C; by pairs of independent elements.
Proposition 2. To a given splitting A : R; R— R:‘_H
of the exact sequence

0— gevs > Rauy —> R, — 0

there corresponds an isomorphism C‘: =1 R: ® A:‘

and DU = (D,6-§,D (D 6~§)) , where u=
=(6,§)e R, @ AL, D =d-oa, D*= 0.

Let us introduce a riemannian metriec a;ong the fibres of

’

the vector bundle R, and also some riemannian metric along
the fibres of T(M) .

We have thenon Ry, 1 =« 0,1,..., m "the in-
)y Y%

r _ ax 3

| lx , and the orthogonal decompogition RM_~ A“ ® B, .
Let us denote by o¢ and /3 the orthogonal projections of
" n r " - -
R, ~onto A'Q and B, « We have the (3 -resolu

tion"

ner product ¢ X € M and the corresponding norm

AD,

BD, Al om
(9 0= @ g Hhv g, B2 S b7 — 0

4
Be B

which is equivalent to the Spencer's resolution in a sense of
the following

Theorem 1. The diagram
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0 0 . 0

! l

0-———)A;~_D__>N‘“_D__).u —D'—).A.':,,,“——)D

|, l

0— & — C;-ﬂ—» c‘:‘_ll_, ..l)—;C:

eon

| o l

0___,9.__,5:’_@.,5:‘_/5&.,.”[3_2’_,52
0 0 0
(A':‘ = A':,_ ® A'::‘ ) is commutative, and the last

row is exact if and only if the middle one is. The first row
is always exact.
Definition 2. The differential operator D : E — F 18
said to be elliptic if for any nonzero cotangent vector
§ e T: the symbol map
6(D,§): E,— F,

is injective at each point x € M.

We can characterize the ellipticity of the operator (which

is understood to be regular) & in somewhat more convenient
ways for our purposes.

Propoasjtion 3. The ellipticity of an operator & is equiva~
lent to any one of this following properties:

(1) the symbol of @ in the following sequence is injec-
tive, o
0— R‘u-—" J‘“(E)—'—’ J“(E.)/ R@-——‘r 0,
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ice. forevery §eT* (40, xeM
tion

, the composi-

E, 50 £ @ s*(T}) T, (B) 2% U, (E) /R,
is injective, where £ (§) : € — < ® §“ ;

(1ii) the composition

Y~ E®SUUT*) — E®@S8“(T*)/i(§)E
is injective for each § ;

(111) for each §  the composition

G G @T 1 g O NTH

is injective;

(iv) the sequence

0— &g ) = I (g, & T)

is exact for each nonzero § -
Proof. (i) follows easily from the Definition 2.

(1) «—> (1) The fact that Yo i (§f)E NR, = 4
implies that 4 (§)E, N e = ad . If the composition
map in (ii) is not injective for some § # ( , and some x¢€

€ M, then yoi(§)ee R, I, for some e e E
and then < (§)e € g, I, which gives the contra-
diction. ‘

(1i) «—> (1ii) 1is essentially proved by the fact that
the kernel of the compositionmap § A o ,
~ x a “-1,+x A
E, ® 5% (T} L E, 05" (TH o T 4
f . “-1 * 2 x
—E,® ST ® A* T
is 1 (§HE, .
And the last statement (iv) follows from (iii).

_1“-



Ellipticity of an involutive operator is characterized
by ’
Eroposition §. The prolongati on 35‘_ » @ & w, of the
operator & of order (4, 1is an involutive operator,and
it is an elliptic operator if and only if the map
hod: D%, — T*A,
a8 a oompoa»ition of

« 2% a1 5% AR . %A Ly * A1
ros BFAL B AL and d: S*g, DAL,

(where &G*: S* (M) — M is the unit cotan=
gent sphere bundle) is injective.

.Thie statewert is a comsequence of Proposition 3.

Let us denote by a* the (formal) adjoint to 4 with
rupeét to the e‘calar‘pro.duct

C(,)1=/¢C(, >dm.

We can now state
Lemma 1. (18)) The ellipticity of an operator & is equi-
valent to the existence of a positive number ¢ such that
for each section e Ay , « 2 ,, 161 € m
over any coordinate neighborhood U C M with compact sup-
port, the following inequality holds:

(6 ({d(«xd*)+(ad*)d}§, §)2clfll,, - hge .

Proof. From Proposition 3 follows that the ellipticity of an
operator D 1a equivalent to the exactness of the short se~-

quence

m 0 — AL—L-r A2,
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But D.G.Quillen ((6]) proved that the exactness of 0 —>

‘ ),
— C:‘_ £@,5), C:u is equivalent to the exactness of
the last row of the diagram

S U
s R —

0—> o CRu8), 01 o.§), ,,, 6D.8), (» — 0
(%

0 0

in stable range. This proves that the exactness of (7) is

equivalent to the exactness of the first row in (8) for all

« = ©, - Then there exists a positive constant ¢’ such that

x n %
for each nonzero § e T* andanyAe A7 |, 0€nse
£ m , the inequality

(9) AL + Ia§)a 12 2 ¢ IEI2 1AL

holds at each point x € M . Using Fourier transform we obtain
the equivalence of (9) and (6).

On the basis of the " 3 =-sequence” we get

Lenmg 2. The ellipticity of an operator @ is equivalent to
the existence of a constant ¢ , 0 < ¢ < 1 , such that

2 < 2
(10) L (Bd*)§ 1 ‘é(‘l;-c)gﬂdjé‘ﬂ

for any § € A; ) 2 mu,, # &1 with compact sup-
port in U, Zdx*Ad;§ = df .
Progf. Let us notice first of all that for ez 2 ( the

exactness of the sequence
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0— gy L5 1 BEyp2 £E5 . Ll pm — 0

is equivalent to the ellipticity of the opermtor o0 . But
from the diagram

0
0 — %,;, ——*/s(é.;‘)——+ ...————»/3(&:)—-40
0— B, —— B, — ...—> BI—0
0— R, ,— ;ll:"-—-'———’ R, — 0
| l
l0 0 0

follows that the first row is exact if and only if D is

elliptic. And now similar argument as in the proof of Lemma 1
gives the statement.

4. Before we are able to give the proof of the main re-
sult we have to consider that differential geometric aspect of

the regular differential operator d  of order @« on the com=

pact n-dimensional C%®-manifold M .

Let { @’ yoeey @™} be the orthogonal coframe in

the coordinate neighborhood U € M with respect to the chosen
riemannian metric on M . This means that w®* . @™ = d:;

i,k =1,2,...,m . Let @ = aj dx* , dx’=
= b: @™ | where for the C® -functions holds a:;" lr; -
= d’; . We shall use the symbol 'a—;z‘ for the cotan-

gent vector dual to w® and aleo for the derivation in the

exterior algebra of differential forms on M . Let us denote



by V., V= w AV |
with respect to the metric connection on M . We have then
from the fact Vaw® =0, € =1,2,.

the covariant differential

m the identi~
ty dat = Tin w* A ¥, The curvature form of the

riemannian metric on M is the 2=form R = V (o) ;

I = (ﬂ:b w*) being the connection form. We shall

‘2

use the usual star operation " X " on forms with values in

a vector bundle, the symbol 7X for interior product. The

volume element of M will be denoted by x (1)= @' A... AW™.
Let {€ (x),..., €, (x)} be a frame in the fib-

re of A%, over x € U, amd {-C*_H(‘x),...,-em(.x}}

a frare of B%  at x . Then the choice of the frame {-81 (X0,

” s
ver , 8, (X) 3 in R, I gives a trivialization of

R"‘:* over U for all r , and any section 6 € R':;, ()
can be written in the form

¢=1 5 S e6r
oC “1:.'

Dty

o
4,

O"AL AL ® e .
. oC

The matrix a = a(x) =(a&ﬂ (x)) is the matrix

of the metric tensor, with components I (x) = (€ (x),
'6/‘ (x) > . Remember that the global product on M is given

by the formula (G',Sb):ﬁ/o’/\a,*p for any sec—
tions 6, o of R . The l-form @ = —;_— a~‘da is
the connection form of the metric connection uniquely assogjﬁe-
ted to the riemannian metric along the fibres of R‘a . The
curvature form of this connection is given by the formula
MT=dO+06 A6 .

We have seen already that /A is the l1-form of connection
on Ru , Which is given by the covariant differential D, =
=3+ e (A) . Let us define further the operators
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Dr' : E’; — R** by the formula
D=D+er), r=a’da.

The operator D, is again the covariant differential of so-
re connection on R, .« Considering the commtator of D,
and D, , we define a local 2-form £l =D, D, + D. D, .

Using the orthogonal coframe introduced above, we have

= o . s .
D=a?Ad; , D =o0?AD;

Then for each 6 € R"’!!

~

(D; D -Dy By, =05, 68

iy
Definition 3. The 2=form "f)L is called the curvature form of
the operator 2 and the corresponding tensor the curvature
tensor of 2 .

Let D;' be the adjoint operator to D, with respect

to the global product ( , ) . Thenfar 6 ¢ R"! the

Weitzenbock formula has the form
{(QD*+DFD,) 6355 =

-ZaDer.; +
" =1
(11)

o 11-.. ‘M

+ 5 (n”

- R )6 -
LXK ""4 R"D)

LIDL APy L e

-1 R ad , . . )
2 deer L VR NY e EL WPTL P L SRTE S P

= i Ri«l‘lp ;
of aymbolically
g 6=-239;D 6"-2- R6-Re+06 .

We shall use the notation N(s,6)=(N6,6),
R(b’ o’)-(Ra’ 6’) R(6,6) = (R6,6) .
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Lempa 3. For each element 6 € R, the folllowing iden-
tity holds:

o . 3 \
02), & B R-RYI (67 357,673 )= 2.6:6)-RE0)-§ R 00

Proof. For any 3 R" we get in U the formulas

{sbph(m;——m-———-—Z{ 6% 4 + 63 i nlng

(e -1 ity mrgt Giptp o rlagd

COM AL A Q"'“

(WG 67 357 Wit ZA iy 1A T Sty *
+rl;: 6;,1 “5-1 ) Afh 0*6::‘4 1-1} G)"’A... A a)“"
This proves the statement.

If M is a finite submanifold of the C% -manifold M’ ’
the closure M is compact, and the boundary bM of M is re~
gularly imbedded C® =-gubmanifold of M’ of codimension 1 .
Let r(x) be the distance function, then we have the formu-

-2
las dr A X du = drcda k(1) = x (1), de= 50 o™

We have for each & € R”* I U the decomposition 6 = t 6 +

+m 6 , where t+ 6 1s tangential and m 6 normal at each
x € bM . On the basis of the formula
I

t (A AfA...A™) = (—1)"'%1 x (dr)
we get the "integration by parts". .

Proposition 5. For any C* -functions a, £, g holds on a fi-
nite manifold M the identity

¢;—2,,*(4) /-af a,af;*('l)-r[fa[w.;;; gaigg‘dw
+f+'a,(c“ c,“)a—ig*('r)-rffa.(ééﬁ& 8 )k (1) +

*f( ;"—9- “';—"3—2’;)*(1).
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S. The exactness of the sequence (4) or (5) is a con-

sequence of solvability of so=called Neumann problem,which
will be discussed in this part.

Let & be an elliptic operator and M a finite sub-

manifold as above. D* be the formal adjoint to the opera-

tor D . We use the following notation:
C ¢ the restriction of the space of sections of Cf.z
=8, C';_ to M , elements which are smooth up
to and including the boundary;

C, ¢ the completion of €  in the norm I | 5
D,D* : the extension to €, of the operators D, D*

rd
in Spencer s sequence;

N : the elements « € €,  such that Du lies in
the domain of D* , and D*& 1lies in the domain
of D ;

H ¢ the subspace of N composed of the elements of
N which are annihilated by the Fridrichs exten—
sion L of O =DD* + D*D  on IN.

Definition 4. We say that the D-Neumann problem is solvable for

a finite manifold M , and the elliptic differential operator

D,if LN is closed in C, and the Neumann operator

(13) N:C,— N
comnutes with D ,

Reparke If LWN is closed in €, we have the orthogonal

decomposition C_=DD*N @ D*DN & H , and we
define the mapping (13).by the relation Nu = w - Hw,

where H : €, — H is an orthogonal projection and
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smelw+ Hw, welN.
Propogition 6. The D-Neumann problem is solvable if and only if
the operators H and N have the following properties: N ig
a self-adjoint bounded operator satisfying NH = HN = 0 ,

a4 = DD*Nau + D*DNu +Hau '
for ecach « € €, , and

ND = DN .

Proof. Follows essentially the lines of the proof of Proposi-
tion 2.8 ([51).

From the work of J.J.Kohn and L.Nirenberg follows that if
for each 4« € €, which is in the intersection of the do-
mains of D and D* Tholds for some € > (  the inequa-
lity

(14)  (Dae, D)+ (D*w, D*w) + (ad,a0) 2 E}flul:,*(d«)
M

then the D-Neumann problem is solvable and

H2 Z(C,)/D (C,) .

The solvability of the D-Neumann problem implies the isomorph-
jem M"* > H* , Where M = ®, H* is the space of
elements A € C, which satisfy the conditions

(D*w,v» ) = (w,D2v) ,
(15) ‘

(D*Dum, ) = (D, Do)

for al1 2 € € , and which are annihilated by the lapla-

cian 0O .

Spencer” s copjecturde. (The local Neumann problem): If De,
is an elliptic operator, then the D-Neumann problem is solvab-
le on sufficiently small spherical neighborhood of euclidean

n-space and, for these domains M* = 0 for 1 = .1 .

- 191 -



The problem then remains, to prove an estimate of the

form (14).

6. The harmonic space H is the subspace of € ,
which elements satisfy both boundary conditions and which
are annihilated by the laplacian [ , For the fundamental
estimate is essential the explicit expression of the Dirich-
let integral, when the elements w € € are smooth up to
and 1including the boundary and satisfy only the first boun-
dary condition (D*w,v ) = (w, Do) for all ve (L.

Let us use the notation
~ ~

dyy = (Ay+ Ry + 3-890~ (R + N, + -8 D, ,
K=ala', Fara’, §=aba ay=al, -3 =

=ala’, M=ala’ @=aba’ « =al -] «,
~
&= ad-Jon , Liy= VT .

We say that the finite manifold M is “strongly pseu-

doconvex" if at each point of bM holds

(16) 4'§’L“<a.(§7taa—-w;), &({xj-iy)) >0 .

The quadratic forms fJ (§ §), ﬁ(§,§), R(§,§) are de-
fined by the formula
R, 0-Res, -4 20,5 =

-3 (19 Du-Da B3 (Sr i), cc(§m om )
Lemms 4. For any « € which satisfies the first bounda=-
ry condition (15), we have the following identity:
I D Pa i DYl + e k2= Kcu’uHT(u’“)Z‘[L (w,e) x(dz) ,

where




Klw, )= 02(6,6)-R(s,0)-§ Rec; o)+ 8¢5, 8)-Rs5,5)-

--Z- R, 8, ®
L (u,u;:‘%l_‘., <ac(§7r5%7 ), ‘ac(gn%—,))tlg}‘-,-(ﬁrij P
6’7r‘9%;>

T, 23 13,6105 1p g4 (RD; (57 £om ), 8, (s
+(day (67 25, ) OR % )+ (D (on ey ) or553) -

_2(QGKW,ZCM(MW»-(W«R&L) S (En ) +

+ (dy; ac(gnag;) ocffna—:. N+ (82 cc(_(‘na—).) x(_f;rm))-

-2y sn Ey P i (fx;- ) ~(Q ac(;»m ), g‘.x(;,.m»-

~2(D w (r R ), %, n (67 525 D Qantn g ) R (§mgg -
-(S ek (snaw,, Y, 2t (o'zraw. N-(Zch (5;\-55;) )
Zc (g;‘——y))—

- (% (fxa%'u:) DR ST Ve (&, 5 (Eng), Rl s+

Flolts 20612+ 1 Dro i+ I D22 +nu:‘+2{(1;,*a,p:*§)+@qu)
-(§,1;5)-cD.§,D36>};XT;-.. <, (sng%,.), 87:9% dx (1)~

..fa ’(:rr,oc(fnr;) x(fx 7> % (1),

Theorem 2. If the curvature of the elliptic operator Q is
such that the quadratie forp K(u,u) 1s sufficiently positive
forall « e C* | 4 2 4 » 80d 1f both conditions
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(15) and condition (15) are satisiied, then H*« 0, & 1.
Proof. Investigation of the expression .
K, )+ T, )+£L(u.,u-) x (dn) = lul'
gives the stateuent. o
The rain result concerns the cohomology groupa H"
for a compact manifold, assuuing that 2 is an elliptlc
operator. (n the basis of the resolution (4) and (5)(which
is assumed to be exact) of the sheaf @ , and uaing de
nham's and Hodge ‘s theorem we conclude that it is enough to
investigate the harmonic ele:ents of the graded vector space
C-= ®, C* of sections of C‘w = @, C: over
the manifold I, We get
Lempa 5. If & is an elliptic operator, then for any har-
monic jet form w = (6, §) € C"’ n = 1 , there ex-
ist positive constants K1 s Kz such that
Klw,ae) & K, e l*+ K, IfI%
where -
Klw, )= (6,6)-5R6,6)+8(€,6)-7 R(E, )~
-R(s,6)-R (5,5 .
Proof. Let us notice first of all that for any harmonic Jjet
form w (6,§) € c” , 4 & 1 , where (6,§) 1is

an obvious representation of u , we get the formulas

N(6,0)-3R(6,6)-R(s, ) =-FID e+ " |
_Q(§,§)-3 RC§,§)- ﬁ(g’§)=-;”_p7_§"4+"ﬂy’#§u1+...’
where . . . denotes the half order terms. From Lemma 2 we

have the formula
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IAD g1 - SUDE M = - Z g%+ (ﬁdu(iﬂg?;z),
pet (s oo
* Tt ‘

Applying these identities to the forrula for K(u,u) , we get
the statement after some investigation.
Theorem 3. Let M be a compact manifold and & an ellip-
tic differential operator. If the Quadratic form X(u,u) 1is
sufficiently positive for all « € C*, n & 1, then
H*(M,8)=0, ~ = 1.

Considering the /3 -resolution of the sheaf © we

?

get another form. The cohomology H (M, @) is iso-
morphic to the space B = ®, B* of sections of
BM = @, b"; over M , which are annihilated by the la-
placian D;‘\ AD + B D, D: . Vie have analogy of the
Weitzenbock formula. Let 5

Ks (@, 9) -({.‘bilg,-lz,ébé}ﬂ‘(pxm), ﬂ(png,%* ),
and

Ky(0,0)= 2,00,0)-3 R (0,0)- R (p,0) -
Then by similar reasoning to that one we have made earlier the
following statement can be proved.
Theorem 4. Let M be a compact manifold and D an elliptic
operator. If the quadratic form 'O'!‘ (p,p) is sufficient-
ly positive in the sense that K,, (;D,P ) is sufficiently
, k=1, then for n = 1

H*(M,®) = 0 .

positive, for any P € B*

It can be proved that the Kodaira ‘s vanishing theorem is

a special case of these statements.
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' Let us assume that‘ E and F are differentiable complex
vector bundles over a compact differentiable manifold M ,and
the elliptic differential operator J : E —> F  as above.
We can state then
Theorem 5. If the quadratic form K(u,u) is sufficiently po-
sitive for all «w € C*, 2 & 1, then dim H°(M,8)
is equal to the topological index of the differential opera-
tor D +D*

Proof. Let us consider
C,= @,; sz , C1 = ®,, CQ:«.«M .

Then
D+D*: ¢,— C, ,

and the adjoint operator D + D* maps C, into .C, . The
e
Euler-Poincaré characteristic y (M, ® )-M.ZOM V' dim H¥(M,0)

is the analytic index of D + D¥ ., And by the Atiyah-Singer
theorem this is equsel to the topological index of the operator
D + D* , This gives the statement.
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