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Commentationes Mathematicae Universitat ia Carolinae 

8,2 (1967) 

THE ELLIPTIC DIFFERENTIAL OPERATORS 

Bohumil CENKL, Praha 

1* Sufficient cond it ions for vanishing of the cohomo-

logy groups, of a complex compact manifold M , with values 

in the sheaf of germs of holomorphic sect ions of a complex 

l ine bundle over U were given by K.Kodaira [43. The condi­

t ions are formulated i n terms of the character is t ic c lass of 

a complex l ine bundle over M • In t h i s paper a general iza­

t ion of t h i s problem i s solved for a regular e l l i p t i c system 

of l inear part ia l d i f f erent ia l equations on a compact d i f f e ­

rent iab le manifold M • The cond ition for vanishing of the 

cohomology groups H* C M, © ) , * - > 0 f 0 being the 

sheaf of germs of so lut ions of a homogeneous regular e l l i p ­

t i c system 3) i s s tated in t erms of suf f ic ient p o s i t i v i t y 

of the curvature of the operator 3) • 

The Spencer's reso lut ion of © by sheaves of germs of 

je t forms CK
 ? exactness of which i s assumed, can be simpli­

f i e d i n some sense. We get the so -ca l l ed " fl - reso lut ion 

where B are d i f f erent ia l forms and /3J)0 i s a f i r s t or­

der d i f f erent ia l operator. This resolut ion i s equivalent to 

the original Spencer's reso lut ion . Suff ic ient conditions 
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for vanishing of H* fM, ® ) , K > 0 are then given 

in terms of the ft -sequence. 

Considering the manifold M and the respect ive complex 

analytic vector bundles we get , on the basis of the Atiyah-

Singer index theorem and the vanishing theorem, re la t ion be­

tween the dimension of the space of global solutions of the 

homogeneous system and the topological index of some e l l i p ­

t i c d i f f e r e n t i a l operator associated to the original operator. 

The exactness of the resolut ions of © i s c lose ly 

re lated t o the existence problem for over-determined systems 

of e l l i p t i c d i f f erent ia l equations, 3)* » -f (see f 6 J ) . 

The exactness i t s e l f can be stud ied i n connection with a l o ­

cal D-Neumann problem [83,193. The fundamental estimate for 

the Dirichlet integral & 6a,.4t)-= HJ>utL + lJfu^ + i - tc i 1 

( u i s a sec t ion of C* , ft > 0 ) i s required for the s o l ­

vab i l i t y of the .D-Neumann problem for a f i n i t e submanifold M 

of & C°° -manifold M . T h e curvature of the operator 2> 

allows to give an e x p l i c i t expression for the Dirichlet i n t e ­

g r a l , and a lso some suf f i c i ent cond it ions for vanishing of the 

cohomology groups H * « Z (€K) / D ( £*** ) i n p o s i t i ­

ve degrees. Here Z ( £*) i s the kernel of the map D ; 

£*—*C*** ,where C* denotes the space of sect ions of C* 

over M which are smooth up to the boundary of M • 

D e t a i l s and complete proofs w i l l be given in the paper "Va­

nishing theorem for an e l l i p t i c d i f f erent ia l operator" in the 

Pac i f ic J.BIath. - This work was done during the author's stay 

at Stanford University. -

2 . We consider only manifolds, vector bundles and maps of 
\ _ 

these objects which are "smooth", i . e . C . .The sheaf of 
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germs of smooth sections of a vector bundle £ will be deno­

ted by E , Let M be an n-dimensional manifold and £ » 

F be vector bundles of dimensions a, Jt respectively, o-

ver M * We denote by J^ (E ) —» M the bundle of (tt-

jets of £ • There is the natural map ^^ : E — • J&, (E) , 

which to a section s of £ and a point x € M associa­

tes the (C6-:Jet of s at x . Denoting by S ^ C T * ) the 

(tc ~th symmetric product we see that £ & S*** ( T*) is 

the kernel of the natural projection Tt: J**^ f £ ) — » J L C£). 

Let us denote E * * £ ® A T for any vector bundle 

E • There exists a first order differential operator 

D i J^A(i ( E) — • J^ (E ) such that for any smooth 

function f on M and (T € J^^ (E ) holds 

D* *T * d* 9 are + fDe . 

And Dtf .-r 0 i f and only i f & * ^ /b for some s e j . 

The operator D extends uniquely to a "derivation1* 

J): J*„ ( E ) - » J£* (E) . Then J)1 * 0 . The operator D 

gives rise to the formal differential of . The operator <f i s 

defined in such a way that the following diagram is commutative. 

0—>E®S"\T*)®A*T*^Jp„(E)eKT*^J^(E)&/<rT*^0 
(1) 1-* ] D ]» 

0—» E®S*(Tn®/?*T*^J^(E)<8>A™T*^Jp-<(E)0/?TZ>O 

Locally in the coordinate neighborhood JJ on M , with 

coordinates .X * (x*9 ... 7 iX*** ) a local section tT € 

6 J* ( E ) over U can be expressed as follows: (> *--

an ordered n-tuple of non-negative integers £ ^ , Ig,)-- 2f+ '" 

•••+S-.» ft- <*! I 1 * t* * "» ? > where 
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ff* = 1 5; ff*. .. 

The formal differential cT of 6 is given by 

( лЧ-*£d* л**ч* 
and the operator D applied to G has the form D6 = 

A sheaf map 3) ; _£ — > JF , which is in trivializa-

tions of the bundles E and F over the coordinate neigh­

borhood U given by the formula 

ł * i é < « в 

ŮÍ, s (<X-<i т - 7 <**>, î 

ilocl 

* ( d * * ) * ' . . , rrP^"l)0Cin' ' * € §-Lt!- ^ a1*6 (-£<*/*-.^mat­

r ix-va lued functions, i s sa id to be a d i f f e r e n t i a l operator of 

order (UL0 from E to P • There e x i s t s a unique bundle map 

P/UL + y> y : - , ° r e a c b "i> £ 0 7 which makes the diagram 

4 v ц f E ) 

( 2 ) 
Э-fM-" 

commutative. The operator Sb^ i s the so-cal led "i> - t h 

prolongation of 2) . 

Def init ion 1. A regular system of part ia l d i f ferent ia l equa­

t ions of order, (U0 given by Sb on M i s the kernel R-^ 

of t h e map jD(tt& i n the exact sequence 
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V.—> -V.^-^** F 
if 

(i) the Rxt, are vector bundles over M , 

(ii) the map 37 : R^ .^^ > R ^ is surjective for 

A smooth section -f € JE such that i ^ -P € Rr<x>< 

is called a solution of the system R p , 0 • 

If the conditions (i) and (ii) are satisfied we speak 

about the regular operator 3) and we shall study such ope­

rators only. 

To the differential operator 3) and any f € T ? 

* 6 M , § 4= 0 there is defined the symbol f ( 3) 9 f ) : 

£ —• F of 2) as the composed map 

E , - £ „ • S * C T ^ - ^ J ^ <£>„----*> Fx . 

Locally for some -e> 6 £ ̂  , We have 

<r(2>, f )-e = S a^C*)*** . 

The exact sequence 

defines for ^ £ (U0 the vector bundles ^J* , ft » 

= 0, 4,..., /n *; (U, £. (U0 • 

The sequence 

is not exact in general; but we still have ( f l m 0 . 

The- corresponding cohomology H * ( o O is called ^-cohomo­

logy. The cohomology groups H *** Cty ) vanish for -p £ 

£ ,-tc0 + A ? /t- * 0; 4? 2 r , . if and only if the sequence 
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(3) is exact. 

The system of regular partial differential equations ILu,̂  

Cor the operator 2 ) ^ ) is said to be involutive if the se­

quence (3) is exact. The invalutioness defined in this way is 

that one used by E.Cartan, as was proved by J.P.Serre C7J. 

3. Assume that p , £ (U. i«e. H1""'*' (g.) - 0 , and de­

fine the vector bundles 

. *%- U e * £ I if! -0}, C* - R%„/A%„ 

for a l l non-negative integers r . The sect ions of C^ 

M are cal led jet-forms. The commutative diagram 
over 

&* &ŹІ 

P 

P >ť 

V 

_f__ + c 0 

which defines the f irst-order operator D : R* • 

factors through c£, , so that we have the f i r s t order d i f f e ­

rent ia l operator P : C^ • C£T* such that D ' =* Dp. 

We get then the Spencer s resolut ion 

t _. /!# P _. f>4 P _. P 
(4) 0- - C* • 

the exactness of which i s a non-tr iv ia l problem discussed l a t e r . 

Straightforward calculat ion gives an e x p l i c i t descrip t ion of 

Proposition 1 . Bach element AJL 6 C* , (4. & (tc f , 1t £ 0 can be 

represented as a pair C ff, f ) € R £ €> A ^ 4 such that 

ff * rtf , f * oTjD for some element p 6 R^»M , and 
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DlL' (dff- f, - df ) ; J)* -r 0 . 

If the adjoint of the operator D (with respect to some met­

ric) is to be considered it is useful to give representation 

of the elements of C* by pairs of independent elements. 

Proposfrtipn 2. To a given splitting X : R* • &%.+ < 

of the exact sequence 

0 • a* — • R* > R* ¥ 0 

there corresponds an isomorphism C » R* © fif* 
' v* <** •**• 

and T> U m ( J># ff - f , D0 C Do 6> - $ ) ) , where AJL -

* f IT, { ) e R* © AJ;* , J>. - <4 - cTX , D* - 0 , 

Let us introduce a riemannian metric along the fibres of 

the vector bundle E^ and also some riemannian metric along 

the fibres of T(M) . 

We have then on R* ft » 0f 1, , . . ; /rt the in­

ner product < >x 7 X € M and the corresponding norm 

I I . and the orthogonal decomposition R,̂  » A* © B* • 

Let us denote by ot and /3 the orthogonal projections of 
-& <»*o * ^ and B ^ • We have the " ß -гesolu-

tlon" 

l 5 ) o-+ —* ß ^ - - ^ _ ^ 
A . ДJk «-П, ^ Л 

» ... JV V 

which i s equivalent to the Spencer s resolution in a sense of 

the following 

J&ej22mJL* ^ e diagram 

1 8 1 -



0 

0 0 

I I 

_> c- J t U C" _l_v 

1 /ЗJ)0 ł 

(̂  
l I 
0 0 

f 4&4 

->A: 

/ЗJL 

<" 

( A ^ » A ^ @> A*^ ) is commutative, and the last 

row is exact if and only if the middle one is. The first row 

is always exact* 

Definition 2. The differential operator 2) : JL — • _F is 

said to be elliptic if for any nonzero cotangent vector 

§ e T^ the symbol map 

« • ( * , * ) : £ * - + F-

is infective at each point x € M • 

We can characterize the ellipticity of the operator (which 

ia understood to be regular) 2) in somewhat more convenient 

ways for our purposes. 

Proposition ^« The elliptic ity of an operator 2) is equiva­

lent to any one of this following properties: 

Ci) the symbol of CO in the following sequence is infec­

tive, 

(U. V E ) J^ÍEÌ/R^ 0 , 
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i . e . for every £ e T * f 4* 0 .x € M , the composi­

t ion 

E x ^ ^ > E ^ S ^ I - ^ J ^ E l - ^ J ^ E ) / ^ 

i s i n f e c t i v e , where -L(%) : € • «£ ® f ^ J 

( i i ) the composition 

^ — > E <3> S ^ C T * / — * E<8>S"'(T*)/i(f)E 

i s in f ec t ive for each £ •, 

( i i i ) for each £ the composition 

*»-** 9iu-- • T* - - U 9 ^ , • A1 T* 
i s infect ive; 

( iv) the sequence 

0 — * o T f ^ ) - - - > e r f t ^ ® T * ) 

i s exact for each nonzero f • 

Proof, ( i ) follows eas i ly from the Definit ion 2 . 

( i ) <—• ( i i ) The fact that f o -t f f ) £ R R ** 0 

implies that i(§)EM f\ a, «- 0 . I f the composition 

map in ( i i ) i s not in fec t ive for some f 4s Q and some x € 

e M , then Y o i ( % ) -e e R ^ I x for some e e S^ 

and then <L ( § ) -e e (fr I which gives the contra­

d i c t i on . 

( i i ) *—v ( i i i ) i s e s s e n t i a l l y proved by the fact that 

the kernel of the composition map § A cT , 

Ex s> s~ c T* > ~--+ £., ® s"-* c T* ; * T * - - - * 

- - - -> E . ,* S*-«t*T*> ® A- T * 
iX v» iX 

is i Cf ) E^ . 
And the last statement (iv) follows from (lit). 
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Ell ipt ic i ty of an involutive operator i s characterized 

by 

fm9§tUP-ri i» 23*e prolongate on 2>p. t | a .5 ^ of the 

operator «9 of order fu0 i8 an involutive operator,and 

i t i s an e l l ipt ic operator i f and only i f the map 

л> o ď ^ * 
: cò •"(.*•••« Z>* A ^ 

as a oompoaition of 

Ѓ9 4 < З * A ; • SS* anđ ď: -Z*A% 

Cwî ÌЄ--• Q* : Ъ* ( M ) > M І8 tҺe UПІt cotan-

gent sphere bundle) i s infective. 

This statemext i s a consequence of Proposition 3* 

Let us denote by d* the (formal) adjoint to d with 

respect to the scalar product 

C , ) - J C , > <~M . 
W P can now state 

Le^aaJt. U83 ) The ellipticity of an operator 2) is equi­

valent to the existence of a positive number c such that 

for each section / t A^ , (U, £ ^ 9 1 £ /t, 6 m, , 

over amy coordinate neighborhood U c M with compact sup­

port} the following inequality holds: 

(6) (id I Ad*) + (*d*)d}$, f).c H « w - «?** • 

Proof* Prom Proposition 3 follows that the ellipticity of an 

operator 2) is equivalent to the exactness of the short se­

quence 

1 &> (7) 0 — • Aji-s-* A 
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But D.G.Quillen (£6J) proved that the exactness of 0 — • 

— * C° -—L*-* C ^ is equivalent to the exactness of 

the last row of the diagram 

0 0 

o > fL - ^ -=i-> *£ —" ° 
I i 

(8) o—>*;---* R V ~ U ••• - ^ p —*° 
W Wf4- * f 4 » 

I I 
i n stable range. This proves that the exactness of (?) i s 

equivalent to the exactness of the f i r s t row in (8) for a l l 

AA & (U, . Then there e x i s t s a pos i t ive constant c ' such that 

for each nonzero § e T* and any X e A* I „ , 0 -* rt £ 

$ /n- , the inequality 

(9) I f A I* + I Ccc £ * ) * . * * C l f |* I A I* 

holds at each point x € M . Using Fourier transform we obtain 

the equivalence of (9) and ( 6 ) . 

On the basis of the " ft -sequence" we get 

Lemma 2 . The e l l i p t i c i t y of an operator S> i s equivalent to 

the existence of a constant c , 0 < C < 1 7 such that 

(10) | ( / 3 d * ) S « 2 £ ( f - C ) | I d . , ? ! * 

for any § e A* , ^u, & / a f ft & 1 with compact sup­

port i n U , X d * * A d ^ » d f . 

Proof. Let us notice f i r s t of a l l that for AJU t-» /u. the 

exactness of the sequence 
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V ^(t-V ^(M, *><, (t̂  

is equivalent to the ellipticity of the operator Jt) . But 

+ ß(*P 

л 
< * 

l 
i 

• ř" 

0 

0 

• 0 

follows that the first row is exact if and only if 2) is 

elliptic. And now similar argument a3 in the proof of Lemma 1 

givea the etatement. 

4. Before we are able to give the proof of the main re­

sult we have to consider that differential geometric aspect of 

the regular differential operator 3) of order /ou on the com­

pact n-dimensional 000 -manifold M . 

Let {co1 , . . . , t u * { be the orthogonal coframe in 
the coordinate neighborhood U C M with reapect to the chosen 

riemannian metric on M • Thia means that a>* • CJ** = d£ ; 

i , Jk, * 1, 2., . . . , <n . Let <u* - o,^ dLxH , d*4, -

» Jlrt a*0 , where for the C°* -functions holds a * Jb£ -

*. cff , We shall use the symbol ^ < for the cotan­

gent vector dual to co% and also for the derivation in the 

exterior algebra of differential forms on M . Let us denote 



by V ? V ** CO* A V* the covariant d i f f erent ia l 

with respect to the metric connection on M . We have then 

from the fact V w * m 0 P -i « 1, Z9... m the i d e n t i ­

ty dco* =s JT*- co90 A co* . The curvature form of the 

riemannian metric on M i s the 2-form R m V C JT ) ; 

JT se ( rrj . CO** ) being the connection form. We s h a l l 

use the usual s tar operation " * M on forms with values i n 

a vector bundle, the symbol 7T for inter ior product. The 

volume element of M w i l l be denoted by # M ) = Co* A... A co"1. 

Let {*e (X ) 7 ... , <Jtt Cx ) ] be a frame in the f i b ­

re of A* over x 6 U f and { ~t. Cx) , -<2 Cx ) } 

a frame of B ^ at x • Then the choice of the frame {-£ Cx\... 

.. . „-e ( * ) $ in R* I ^ gives a t r i v i a l i z a t i o n of 
R/JL over U for a l l r , and any sec t ion & €. R I U 

can be written in the form 

f « ^ . X . Z AT6 . */« A . . . A 6 > 0 ^ . 

The matrix £t =- a f-X ) - f £/, „ C*X ) ) i s the matrix 

of the metric tensor, with components *o> m Cx) -=• <-£ f *X ) , 

"€4 Cx) y 0 Remember that the global product on M i s given 

by the formula ( <T, t© ) = f 6 /\ Q, # p for any s e c -
M A 

t ions 6T, jp of R ^ . The 1-form 0 m -L ar1dcL i s 

the connection form of the metric connection uniquely assoc ia ­

ted to the riemannian metric along the f ibres of R^ . The 

curvature form of t h i s connection i s given by the formula 

TT- dG + e A 6 . 
We have seen already that .A. i s the 1-form of connection 

on Rju 7 which i s given by the covariant d i f f e r e n t i a l Dc * 

* d • e ( A ) • Let us define further the operators 
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^n : fj£± ¥ *L&1 b y the-formula 

Dp m J)o + * (D , P - a ^ a . 

The operator Dr i s again the covariant differential of so­

me connection on R^ • Considering the commutator of Dc 

and Dr , we define a local 2-form SI • $0 Dp' + D J)e . 

Using the orthogonal coframe introduced above, we have 

J)n - Cj /\ fy , J>D- £ > A D :̂ . 

Then for each 6 c R ^ 

Definition 3» The 2-f orm J_- is called the curvature form of 

the operator 3) and the corresponding tensor the curvature 

tensor of 3) • 

Let D* be the adjoint operator to D0 with respect 

to the global product ( ) . Then far & e R ^ the 

Weitzenbock formula has the form 

i(\x-^:^)^t-^'-^^i^6^-^ * 
(ID 

+ i t < / £ , . - <rf R* > <r/ • •, ...,; -

- -i 5" R* /r-1 . . . . . > 
2 &\>,i V**' V'V<*V«'"V.»V. . • •** ' ' 

< - J, RU* * 
off symbolically 

D e - - Z 2 _ V,e- 4 Rff- R<r + J i r 
o jr #• •*-

We shall use the notation SI (&7 & ) * (SI 6, 6)7 

R(r, t f)«f Rer, er), Rf<r, en - ( Rer, er> , 
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jjgmjmâ J,* For each element 6 € Q^ the folilowing iden­

tity holds: 

( i 2 > £ « ^ V 4 ^ 

Proof* For any G e R*^ we get in U the formulas 

' Cú f A . . . ACJ , 

This proves the statement. 

If M i s a f i n i t e submanifold of the C°* -manifold M# , 

the closure M i s compact, and the boundary bM of M i s r e ­

gularly imbedded C°° -submanifold of M of codimension 1 • 

Let r(x) be the distance function, then we have the formu­

las d* A # d% m d* * d* #(4)~x(4)9d%* £*i &H • 

We have for each G € R ^ I U the decomposition G ** t G + 

+#lG } where t G i s tangential and /nG normal at each 

x € bM • On the basis of the formula 

t C o / / t . . . A a ; i A . . . A G / v ) * f - ^ ' j S T * (<**> 

we get the "integration by parts". 

Proposition 5. For atny C °° -functions a, f, g holds on a f i ­

n i te manifold M the ident i ty 

/ ^ ^ * « V&*&*W);>MB- &-&&»*> 
Si 

+/**<<&-<>&>*<<>+/<*({&*>'& %>*">+ 
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5# Ihe exactness of the sequence (4) or (5) i s a con­

sequence of s o l v a b i l i t y of so-cal led Neumann problemtwhich 

w i l l be d iscussed in t h i s part* 

Let SD be an e l l i p t i c operator and M a f i n i t e sub-

manifold as above, D* be the formal adjoint to the opera­

tor D . We use the fol lowing notation: 

C : the r e s t r i c t i o n of the space of sect ions of (L » 

m $' C"^ to M t elements which are smooth up 

to and including the boundary; 

C 0 : the completion of C in the norm II II • 

D D* : * n e extension to C0 of the* operators D, D* 

in Spencer s sequence; 

t\l : the elements AJL € CQ such that D.u. l i e s in 

the domain of D* t and D*,a, l i e s in the domain 

of D ; 

H : the subspace of IN composed of the elements of 

tsl which are annih i lated by the Fridrichs exten­

s ion L of D « DD* + D * D on IN . 

Def in i t ion 4 . We say that the D-Neumann problem i s solvab le for 

a f i n i t e manifold M , and the e l l i p t i c d i f f erent ia l operator 

2) , i f --* N i s closed i n C 0 and the Neumann operator 

(13 ) N : C e — • N 

commutes with D . 

Remark> I f L N i s closed i n C0 we have the orthogonal 

decomposition C 0 = D D * N © D*D IN €> H , and we 

define the mapping (13). by the re la t ion N AA, * w - H vr f 

where H \ C e * IH i s an orthogonal projection and 
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x6« -L tc r - * -H t , i r , u r e N . 

Proposition 6. The D-Neumann problem ia solvable i f and only if 

the operators H and N have the following properties: N i s 

a self-adjoint bounded operator satiafying NH » HN * 0 f 

44, m DJ)*N>u, + $*DNAA, +UAJU 

for each AJL e C0 , and 

ND - DN . 

Proof. Pollowa essentially the lines of the proof of Proposi­

tion 2.8 ([53). 

From the work of J.J.Kohn and L.Nirenberg follows that i f 

for each JU, e C, which is in the intersection of the do­

mains of D and D* holds for some fc > 0 the inequa­

l i ty 

(14) CJXtt.,lXa)+ (D*AJ,9 D*AJL) + (AM,AJL)& 6 f 144.1*x(d«) 
ItrH 

then the D-Neumann problem is solvable and 

H - ZCC.) /D (C.) . 

The solvability of the D-Neumann problem implies the isomorph­

ism H * & H* where H - ©„ H* i s the space of 
7 It 

elements AX e C , which satisfy the conditions 

( D V v ) - U , D v ) > 
(15) 

for al l v e" C , and which are annihilated by the lapla-

cian a • 

Spencer* s con.1ectur*e. (The local Neumann problem): If 2)(U,0 

i s an e l l ipt ic operator, then the D-Neumann problem i s solvab­

le on sufficiently small spherical neighborhood of euclidean 

n-space and, for these domains H * * 0 fo* /t & -4 . 
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The problem then remains, to prove an estimate of the 

form (14). 

6# The harmonic space H is the subspace of C 9 

which elements satisfy both boundary conditions and which 

are annihilated by the laplacian Q . For the fundamental 

estimate is essential the explicit expression of the Dirich-

let integral, when the elements AJL € C are smooth up to 

and Including the boundary and satisfy only the first boun­

dary condition CP*/U,,'V ) « (u7 Dnr ) for all %re C. 

Let us use the notation 

A » a,Aor4, (** aPa"\ 8-a, 0ar\ «*+,•«>\,'fy* ** > 

2C^~ <K\- 2)^OI , L^ . v4 % K . 

We say that the finite manifold M is "strongly pseu-

doconvex" if at each point of bM holds 

(16) ^mi^<«.(ln§Zi)f *(§*£&)> >0. 

The quadratic forms JL (f 9 f ) , $L(f, f ) , &C$,:f) are de­

fined by the formula 

L^HBffi .4' ^ o r a ny 4t £ C which satisf ies the f irst bounda­

ry condition (15), we have the following identity: 

I'M 

irhere 



*<",»)-Л<Г,*>-*<*,*ì-ÍR(<Гfв-) + £(U)_X(U)_ 
-íftCj.f), 

L(u.,н.)~%Lti<<x.(ţлд^) ^,. д ,. 3- , « 

9кѓs*> 

-2C^^^Z^C^>)-^C^,, $, <*-,&*„ + 

-(**<**& >. S e i ^ , , . ^ ^ , % 

^^^fer))-

- ^ ^ ^ , , ^ c
f
^ . ^ ^

f f
^ ^ ^ ^ ^ 

~/&T<ni*<t*>£F>,*(ix&,)>* (i) . 

T h ? 9 P M 2- * the CUr*ature «-" the elHptic operator 2) ia 

such that the quadratic form K(u u) i. =. ...... . 
™ "*»*> -« sufficiently poaitive 

for all u. e. C * * * v . ^ 
» * * 4 , and if both condition-
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(15.) and condition (16) are satisi4.e4, then H * « 0$ *> * 4* 

Proof. Investigation of the expression 

K(4t,.u) + Tf**, ̂ )t/LT4t,^)^ fd^) * 1^1* 

gives the statement* 

The i-.ain r e s u l t concerns the cohomology groups HK-

for a compact manifold, 'assuming t h a t 3) i s an e l l i p t i c 

opera tor . Cn the bas is of the r e s o l u t i o n (4) and (5)(which 

i s assumed to be exact) of the sheaf 0 9 and using de 

Rham s and Hodge's theorem we conclude tha t i t i s enough t o 

i n v e s t i g a t e the harmonic elements of the graded vector 3pace 

C ** <®^ C* of sec t ions of £ « © C* over 

the nanifold U • We get 

Lejgffi&J>. I f 5) i s an e l l i p t i c opera tor , then for any ha r ­

monic j e t form AX m (6^ £ ) e C* ft & 1 , t he re ex­

i s t p o s i t i v e constants K^ , K^ such tha t 

K U t , * c ) £ K, . . ( F i l 1 * K2 i lfll* , 

where -

K Uc, M,)-fl(6-9*)-i R(*tf)+lL(f,£)- i A tf. f J -

- R Cfff y ) - ' A C f , f ) . 
Proof* Let us not ice f i r s t of a l l that fo r any harmonic j e t 

form AJL (6, \ ) e C" 7 H, & 1 , where (6, $ > i s 

an obvious r ep re sen t a t i on of u , we get the formulas 

Sl(&, cr)-{ R(6,e)~ Rfer, 6) --T. ll^v ll*+ ••• 7 

Acjj).} ftcjj)- kcij)*-fni)^e+\\p.*vf + -'-, 

where • • • denotes the half order terms. From Lemma 2 we 

have the formula 
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I/SDfSlf-£.!&,£ I-- - 1. ld;it>+ (fidK(\A$pi), 

Applying these identities to the formula for K(u,u) , we get 

the statement after some investigation. 

Theorem 3. Let M be a compact manifold and 2) an ellip­

tic differential operator. If the quadratic form K(utu) is 

sufficiently positive for all 4 6 C * . n, & 4 , then 

H * ( M t e > - Q, * * 4. 
Considering the (% -resolution of the sheaf 0 we 

get another form. The cohomology tH ( M , ® ) is iso­

morphic to the space & « © ^ &* of sections of 

k*. ~ ®« &!?L over M > which are annihilated by the la-

placian D * (& J)e + (h b0 Dj* . V*e have analogy of the 

Weitzenbock formula. Let 

and 

Then by similar reasoning to that one we have made ear l ier the 

following statement can be proved. 

Theorem 4. Let M be a compact manifold and 2) an e l l i p t i c 

operator. If the quadratic form Jfl- (p7 p) i s sufficient­

ly positive in the sense that K- ( G> 9 p ) i s sufficiently 

positive, for any (p £ bK K, & 4 7 then f o r / t £ 1 

H* CM,®) « 0 . 

It can be proved that the Kodaira's vanishing theorem is 

a special case of these statements. 
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Let us assume that I and F are differentiable complex 

vector bundles over a compact different!able manifold M ,and 

the elliptic differentia;! operator «2J • JE. — * J F as above. 

We can state then 

Theorem 5. If the quadratic form K(u,u) is sufficiently po­

sitive for all AJL € C*, X & 1 f then dim, /H°(M,8) 

is equal to the topological index of the differential opera­

tor D • D* • 

Proof. Let us consider 

Then 

D + J)*: Ce • C, , 

and the adjoint operator D • D* maps CL into . 0o • The 

Euler-Poincare* characterist ic r ( M , & ) m Zf lAcUmM (Mf0) 

i s the analytic index of D + D* . And by the Atiyah-Singer 

theorem th i s i s equal to the topological index of the operator 

D • D* • This gives the statement. 
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