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Commentationes Mathematicae Universitatis Carolinae
8,1 (1967)

GENERAL THEORY (F V -MODELS
Petr VOPENKA, Prsha

Syntactic models of the set theory in the set theary con-
astructed in [1)~[6) (so called V -models) depend on several pa-
ramatera. By a speciification of the parameters, models in which
the continuum hypothesis (or other statements) does not hold may
be constructed. It was proved in [7)-(8] that the number of pa-
rameters may be limited to two, namely to a complete Boolean
algebra and an ultrafilter on it.

With respect to this fact it seems to be reasonable to pre-
gent the whole theory of V =-models once mor§ in a quite simpler
form. This new form enables to find a general method of finding
@ set-theoretical fomula & (B) with one free varisble to eve-
ry closed normal set theoretical formla ¢ in such a way that
the following holds true: If the statement "There is a complete
Boolean algebra B such that &(8) " is provable im the set
“theory (or, even, is only consistent with it) then ¢ is con-
sistent with the set theory (including the axiom of choice).

At the end of the present paper, we prove that all the con-
sistency results (of some very general kind) which can be obtai-
ned by the method of V ~models can be obtained also by the
method of standard models of the set theory in some extension
of the set theory whose consistency relative to the set theory

is provable by means of scme particular V =-models.
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I thank very much to Dr.P. Héjek who has compiled the
present form of this pgper.

1. Classic parametric model
All the definitions are done in (or with respect to) the
set theory = * with the axiom of choice.
, Metadefinition l. Let & be an elementary formula. The
formula gP’R (called the translation by the variables
P,R ) is defined in the following recursive way:
1) if ¢ 1is atomic, say, Xxe€4, then ™R is<¢x,y>€eR,
2) if ¢ is S & o, Y, respectively, then g’P’& is
01?’“ & cj,_P’ R , gf‘R respectively,
3)if ¢ 1s (3Ix)y, then gPHR 34 (Ix)(xeP&yBR),
If ¥ 1s a formula equivalent to an elementary formuls

PR

¢ 1in the set theory then ¥ is defined as ¢ P> R

We shall write ch instead of ¢ hE,

. Regarke The formula X = 4  is unde.stood as an abbre-

viation of 1 (z)(zey & 1(ze X N &1(3x)(2eX &T1(2eY)).
.Definition l. Let P be a class, R a relation. For

x € P, we define Ppp (X)={y; e P& <oy, x>€ R} . For

X € P, we define W, (X)={y; 4 € Pa(32)(x e Xalz=4yFh).
R 1is said to be & model-relation on P (shartly, Mz (P,

R)) ife

1) (Vxe P)3y & P)(Ppp(X) = ¥, ()

2) (VX €P)(IYye PUXS Dpp (@)
3) (Vx,ye P)(3ze P)C(z:ﬁ-’(x,/y))e“) for £ = 1,..., 8

( &  are the GSdel’s operations)

£) (VXeP)(X# 0 (Ig)(pex & xny=0N"R)
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5) ((3x)(x=a, VPR
6) ((Vx,y,x)(xez&a&a@.—btyeZ))P’R

Definition 2. Let x*, y*,... be variables deno-
ting elements of P. Define

C*(X)m, K€ Pove X6 P& Xu Uy g (X)&(3X*)(X = By, o X*N&
& (VX®) (3 ) (Dp o (4*) = X 2 Bp g (Xx*))

Xe*Ym,. XePxYeP&cX,Y>eR.v.Xe€ P& YéP&

& Co* (V)& X € Y

Metatheorem 1. The predicates (¥, &€* form a para-
metric model of the set theory with the range of parameters
Mx (P, R).

Proof. See [9],[10]. (We have only to suppose that a se-
condary condition (Vx & P)(1 (34 € P)(x=d (y))— x & P)
is added to the formula Mx (P, R) )

The parametric model in Def. 3 with the range of parame-
ters Mn (P,R) will be called the classic parametric model.

Metadefinjtion 2. Absolute formulas are defined inducti-

vely:
1) Atomic formulas of the form X € 4 are absolute,
2) if Sy S are absolute then ¢ & S 5 T, are,
3 i G (X, agyeee ) is absolute then (I x)(Xx € 4 &
& wlix, 2gy.e0)) 1e.
Lemms 1. The following formulas are equivalent, in X ,

_to_some_absolute formulas x) oo y, xeF; (4, % ) (i=1,..,8), Ord (x)ete.

x) In fact, to prove equivalences of these formulas to some
absolute formulas only axioms of the groups A,B are needed.
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Definition 3. lompn (P) e (VX)) (X € P> Xx s P) .

Metatheorem 2. Let ¢ (X,..., 44 ) be an absolute for-
mila. Then the following is provable in the set theory:
Comp (P)—> (VX... 4 € P)(@P(xycy ) = g (X,eue, D)«
The inductive proof is easy.
Definition 4. A class P is said to be a model-class
(shortly, Mef (P) ) ire
1) Comp (P), 2)(Vx & P)( 3y eP)(xey), 3)(Vx,y €
ePI(F (x,y)e P) (i=4,...,8).
Theorem 1. Mck (P)—> Mw (P, E) .

Lemma 2. Mel (L) & (VX)) (ML (X) = L € X)) (where L
is the class of all constructible sets).

The parametric model which is a specification of the clés-
sic parametric model by the conditions Mcf (P), R=E , 1is
called the complete parametric model. If P, is a constant
such that Mel (PR )  1is provable then the specification of
the complete parametric model by P = P is called the com=-
plete model determined by P, and it is denoted by A (R ) .
The model A (L) 1is denoted shortly by A .

Lepmg 3. Every cardinal number is a cardinal number in the »
sense of the parametric complete model.

Definition 5. The sets 71 are defined inductively for
x eOn. n,=1{0%, ﬁﬁf‘(,,g‘n,. ). Forxe U 1y,

¥ (x) is the least o € On such that x € 1, . The mm-
ber T (Xx) is called the type of x .
Legma 4. The axiom D is equivalent to V -“.Uo” N
Lepma 5. Let Mel (P) . Denote the ﬂ" s in the
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sense of A(P) vy /n,i . Then 4;2- Pang, -

2, A sheaf over a complete Boolean algebra.

Definition 1. Let B be a complete Boolean algebra with
the operations v, A, V, A, - and constants 0,1, let <
denote the ordering of this algebra. Let P be a class, F a
function associating with every ordered pair <X, 4> e P2 an
element F (X, 4 )6 B. Then F is called a sheaf of bina-
ry relations (shortly, a sheaf) over B on P .

Metadefipition 1. Let <& (X,,...,%, ) be an elementary
formla. We associate with ¢¢ a logical operation in n + 2

1
variables B, F, x ,..., .xfn denoted Fp Mgy (X ..o X, !

By

(or, shortly, Flo (X4... x”)-' ) by the following recursion:
Frxe g = F(x,y), Flg& v =FgTAFy", Flhg’=
=~ Fry™ ,Fr(3x)9 (X,4... = ViFlg (x,4..),x e P} -

Lepma 1. If ¢ 1s a formula provable in the predicate cal-
culus then the following is provable in the set theory: For eve=-
ry sheaf over a complete Boolean algebra B, Flg7 =1 ,

Lempa 2. If ¢ = ¥ is a formula provable in the predica~
te calculus then the following is provable in the set theory:
For every sheaf over a complete Boolean algebra B, Flg? = Fly ,

Metadefipition 2. Let 1% (X...7%4 ) be a normal formula
equivalent to an elementary formula < (X ...as) in the set
theory. Then we define F"vm(x... g = Flgp (x... )" .

Definition 2. Let 3 be an ultrafilter on B . The rela-
tion P; = Litmz F is defined On P by the equivalence

<x,4)>e R:n F(x,y)ez. If @ (x...4y) 1s a normal
= 149 -



form.},a then ¢* (x... y) den;)tee the translation
C,PP’R”' (X...ny).

Definition 3. A sheaf F 1is called internal iff
Frvx,4,x)(X€x& X = 4. —> 14 & x ) =1. In the sequel,
all sheaves are supposed to be internal.

Definition 4. A sheaf over B on P 1is called complete
iff the following holds true: Let {«,,xe & $s B ,
x#@—fwx/\uy_s 0, {fa,,x € &3 € P. Then there is
en @ 6 P such that «, € Fla, =a'! for every x € &
( b being an arbitrary index set).

Metatheorem 1. Let ¢ (X... 24 ) be normal. Then the
following is provable in the set theory: Let F be a complete
(and internal) sheaf over B on P , then g*(x ... 4 ) =
= FNy (x... 4y '€ x for every X,.--, 4. € P .

Proof. Suppose ¢ to be elementary. The proof is done by
induction; suppose ¢ to be a formula (Jy )y (y...) (other
cases are trivial). Let ((3a )y (g4... D*  hold. Then the-
reisa 4 e P such that ¥ (g ...), hence Fly(y...)%
ez ,but Flry (y...7" ¢ Flrg™ .

On the other hand, let FI g™ e 2 . Putws=F(3ylyy..J.
For a4 € P, put Uy = Fy (y...)" . Let, for a moment, <
be a well-ordering of P . Put 4, = - Vi, , X <y 3 -
Put & = {y,«, + 0}. Evidently Viuy, ye = .

Further, X # 4 —> 4, A 4, = (0 . Consequently, there is

Ay
an @ € P such that &, £ Flix = a' , and thus
‘w4 < Ffy (a,... V' . By the induction hypothesis,

¥* (a,... ), vhich implies o™ .
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3. The sheaf of functions

Definition 1. Let a be a set, B a complete Boolean
algebra. A function f is called a (B, @) -function iff
P(f)sa and W(+) & B -0} - The set of all
(B, a)-functions is denoted by C (B, @ ). For X ¢ D(+),
we formally put +(x) = 0 .

Definition 2. The sets ¢ (B) are defined inductively.
¢,(B)={0%, ¢, (B)=C(B),ﬁ%cﬁ (B). put C(B) sacymcx 8).
For f € C(B), (@ (+#) 1is the least & € On  such that
fec, (B).

Metadefinition 1. Let ¢ Dbe absolute. The operation
F<rg7 is defined inductively., F<Mxey’=Flxe 4" ,
F<r'q&,4;'l_ FSrga .:<r-,‘;1, F'<r'_,9—:=_ F-<r-q-r’ F<r¢ixe
€y )y (X np,... V= VEFlx e g’ A F<My (x,4,...7,0(x )< © @)} . ,

Definition 3. The sheaf F of functions over B on
C(B) is defined inductively with respect to max (p (X)),
e(y)) :

F(x,p)= VIFrxaxz' A g (x), x€ C(B)§ -

Remark. If oo = mar (p(x),p(y)), F(x,q) is de-
fined for E (x) <@E(4)= oL, then F<Mx = 47 is defi-
ned for mar (P(X), (4 )) = «  and, finally, F(x,4)
is defined for @ () £ P(X) = o«

In the sequel F (or Fy ) denotes the sheaf just defined.

Lemmg 1. F<Mx = A I'-“"}'y_-:(cﬂ £ FSMx = 2 (1)
Firxmaf'AFTxez'$ Fly e 27 (11)
Firx=ni'An Flx e X' & Flx € " (111)

Proof. The lemma is proved inductively with respect to

the class D(De Onla (Ve ,B,7)(<x,B8,¥>€D= xS B y)
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odered lexicographically. Put éx (&, 3, %) = <& ,B, 7> ,
where {&, (3,73 =1%, 8,27 %, <X2(3,3 >e D . Let
(%, 3, 9> be the least triple such that there are X, 2,
z € C(B) for which £x(p(x),@ (%), @N=LKx,3, 3>
and the lemma does not hold. If @ (X ) < @(x) then (iii)
is trivial; let @(x) <« @P(x) , let (iii) do not hold.
Then there is 8 % , @ (%) < E(X), «=F < Tx=g A
ANFTzg, exT AFTx=x] AFrx ¢4 %0 .

But 4Xx (0 (%, (), P(2)) <ixX(E(X),P(y), (X)), 1.e.
« % Flz, & 2f7 by the induction hypothesis. Hence
Frx =q'A Flz, € X'A F2% €47+ 0, which contradicts
to AX (P (X),p(), (%)) < 4X(P(X),@(y),@(zx)) -

Let (i) do not hold, let F<rx =4 A F<Ty=2I A Fx+2'+0.
Then there is a @,p(g)<P(X), = FTX=gfTA F <y =2"Flge
GTAFQJ!E’*O.Because of @(g) < ©(X) we have w < Fige
€l 5 08 X (), (%), @(Z)) < iX (O (X),0(),0(x)) we ha-
ve 4 £ FMg e 277 , which is a contradiction. '

Finally, we prove (ii). Ffx=n9q"n Frxez'=

FIx=f A VIFrx=9'A2(g), Q5=

= VI{FIxX=q AFIx=gl Az2(g), Q. 3 =

SVIFTy=glAz@) g 3=Flyez .

Metatheorem l. For every elementary formula ¢ ,
F<rx=nanA Fly(x,2,...7) S Flg (y,2,...)" 1is provable
in the set theory.

Proof. If the formula is atomic, see Lemma 1. Further,
the lerma is proved by the customary induction.

Metatheorem 2. Let ¢ be absolute. Then F <Mg’= Flg™

is provable in the set theory.
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Proof. If ¢ is atomic, see the definition. Cnly the ca-
se (Fy € X))y (Y, X,... ) is nontrivial. By the in=-
duction hypothesis, it follows F<T¢” < F g7 . Let
s = FFgT - F<TgT 4 () ., Then there isa y & C(B)
such that 4 A FTag € X7 A Fly (4, X,... )74 (. Hence
there s a g € C (B )  such that J &k & A Frgeqi A x(@IA
AFry (g, %,V uAx@IAFylgx,. T asp(g) < ©(x) ,
Fly (,x,...7€ FTgp@x...) ,hence « A F<g(x... Y40,
which 1s a contrgadiction.

Lemng 2. Let {fuy, i€ 23S B, {x,, i€ 4 2 & C(B). Then
there is an f € C(B) such that Flye ¥ = VIF Ty = x;'A
Aa;, 4 €} forevery o € C(B) (b is an arbitra-
ry index set).

Proof. f is definedon {X;, i1 € & §by f(x,) = « -

Iheorem 1. The sheaf F 1s an internal complete sheaf o-
ver Bon C(B) .

Proof. The internality follows by Lemmas 1 and Metatheorem
2, Let {a;, L e r§s B, {a;, L€} C(B)ttiru ruy =0,
Put =sun (p(a;),ied), vy=V{a, f)Auw; ,ie &} for
fec,, (B). By Lemma 2, there is an @ € C(B) such '
that Flyea'= V{F"y-f'/\ vu,fec,,,(B)} . It easily
follows that «; < Fla, = a’ .

Theorem 2. For every 44, %4, € C (B ) there is a
Ze€ C(B) such that Flz = & (y , 4, V=1 (R (4,545 )
being the Godel’s operations, 7 = 1,..., 8) . ’

Proof. Put w,=Flxe & (44, 4, ) a = mac(py,),@y;)).
By Lemma 2, there is a 2 € ¢, ., (B) such that

Fly ez = VIFyasIn Flxe & Cyy, 4 T x e ¢, (B)}=
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=V{Fly=x'AFx e % (4;,4; 735 Fiye Fyy,4; 7. The converse in-
equality is clear.

Lemark. Put z (4, ) = z(r%_)-'l,«@(z)-{ry_“%}; clear-
ly 2z <fulfils the assertion of the preceding lietatheorem with
respect to 5;(%,4,2) = {%,, %, $ - The operation asso-~
ciating with every 4, %Y, the function 2z° just defined
will be dencted by { %,,%, $g - Further, we define
<Yy, a4y % = {1%, %4 35 {%;:% % By . Clearly, it holds
FlusCagy,a, 51 =1 for w = <44y, %, % *

Lempa 3. Fr(Vy+0)(Ixey)(xny=0=1.

Proof. Let y € C(B). Put 4 =F Ty 0" . It suffi-
ces to prove that 4 £ ViFixegy & xnay =07 ,6,xeC(B)}.
Suppose that there isa v, J # ¥ £ 4, such that
vAFTx ey & xna = (0%=0 for every x € C(B) -
Let x, be an element of the least type such that w= 1A
AFfx, e # 0. Weprove waflx, e a4+ 0= 0.
Let wA FM(3z)(zeXx, & 2 € o4 )" 4+ 0 . Then there is
a-zo e CB) such that ©(Z,) < (X, ) and w A
AFlz, e x, & z,ey) # 0. Hence v A Flx, e '+ 0,
which is a contradiction.

Definition 4. The function q, 1is defined on ¢, (B) by
Qe (X) =1  for every X € ¢, (B) .

Lemma 4. Qo € Cx,, (B) .

Lemma 3. If ‘@ s C (B) then there is an a € On

such that (nga)(FrxegW’= 1) .
Proof. Take o = Hsupn (P(X), X ea)+ 1.

4. The sheaf of functions on a subalgebra.

Definition 1. Let B's B, 0Oe B’ , 41 e B’ , let
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B’ be a complete Boolean algebra with respect to the same ope=-
rationsas B is. Then B’ is said to be a complete subalgeb-
raof B. L(P) is the set of all complete subalgebras of
B .

Lemmg 1. L (B) is a complete lattice with respect to the
ordering by set-inclusion. The algebra B 1s the greatest ele-
ment of L (B), the algebra B,={ 0, 1§ ~ is the least e-
lement of it.

Lemga 2. If B’ e L (B) then C(BY) = C(B)., If
+ e C(B’) then @ (F) is the least oc such that
fec,(B) . ' '

Metgtheorem l. Let &  be absolute. Then the following
is provable in the set theory: Assume F, (x,4)=F (x,%)

for every Xx,a € ¢, (B’) . Then F, Ty (x...ny ) =
=[if'g(x.../yi1 for every X,..., 24 € ¢, (B’ .

Proof. By inductionjthe only nontrivial case is that &

is (Fy)(yex & v (y,x...). Evidently,

Fé,r-q (Xx...)'< Fl;’?f (x...) . Put w = BTy (x... )1 -

-F, "9 (x...)" and assume « = O . Then there are q

y € C(B) suchthat 0 #+ « A Ry =g Ax(g)a

ARy (4, x...)7T . x(@) +#0 and x € C(B’) in-
plies ¢ € C (B’) . Consequently, & A FRlg € x &

& ¢ (@, Xeee )14+ 0 , hence w A Fp, Ty (x...)&

&qex'+ 0,amd « A FTp (x...) " 4 0 , whichis a
contradiction.

Iheorem 1. Fa.» (x, )= F-;, .(‘x,/y,) for every X
e CCBY .

Progf. By transfinite induction with respect to
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mat (o (x), Py ).
R (x,)= VIRTx=2'A g (z),x € C(B)}= V{F;'Tx=z"'/\v
Ay (), 2z e C(B’)3=V{ﬁ,‘?x:.:E’An,('x.),chCB’)}:g, (x,n4).

The preceding metatheorem has been used to the formula.x = .

X={y eC(B),V{Fyex', xeXt=1.

fagr is the restriction of F, onto (C (B’))% .
Lemna 2. F,, (£,@)=V{Ef=x&g=g'A R, "xexy’,

X,%4- € C(B’)} foar every ¥, g € C(B") .
Proof. Let f, g € C(B’) . Ten Fa,Mfe gl =

Erfeg' AVIREMf=x& gamy,x,yeC(B)}=
=V{ETfeqg&f=x&g=9q", x,iueCB)=
=VIETx ey bf=x&qg=9y' x,gqeCB)=

=VIEMf=xag=ta R Txeqyl,x,yeCB7.

Metatheorem 2. Let ¢ be elementary. Then the following
is provable in the set theory: For every f...g € C (B’),
By g (F. gV = VIR F=xt.. . g=af A R (x...p),
X..ny € CCB)Y &

Proof, By induction; for ¢ atomic see the preceding
lemma. Let "¢ be (3¢ )w (g, f). Rl (3g)y (g,f) =
=V{ETt=x&quaf'A BTy (14,x7, g € C(B),x,4e C(B<
SVIETt=X"AVIRTg =4, yeC(B), gellBI}nA

AV FETy(y,x)', 4 € C(B )}, xeC(B)} =
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’V{F;r+'=.x—'/\ Fslr—(sfyv)w(@’x?,\’(éc(B’)}, as
V{";r9-='97;’y-€c(ﬁ')}- 1 for everY &4 € cce”n.
On the other hand, F M= X'A £, C(3y)V¥ (g, x ) =

=RTf=x"AVIE Ty (4, x)", 4 e c(B)g =

L}

VEETE = X A BTy oy 5T, e €O S

IA

VIET$= XA ft;"'va:'/\ ";,'-‘V (y, x y,x,y € C(BIF<

< V{Erfax & 9«844?/\ F;’r-qy (,y,’.x)",.x,fy-eC(B’),

g€ C(BN3= VIE, y(g,#), ge (B )=y  (3g)¥ (£,

Corollary. If ¢ is closed then Fpp & '= g™
is provable in the set theory.

Definition 3. The functions KR, € Cp(y, (B)  are
defined for every set x by induction with respect to 2 (x):
AR,= 0, ’k’.x (£)= 45-.(3@)(-}‘-}03&@5)();9(‘):{&,,95“}
Lemma 3. C(B)={4k, ,xeVi.
Lenma 4. F,T A, e R’ =1=x¢€ %
Metatheorem 3. Let ¢ be normal. Then Fl;.r? (e, yeee
ey Ry == g (X, )

5. The model V (B, z )
., C(B)
Defipition 1. Put Ry = &m,  Fy ,
trafilter on B . In this and the next section,

Zz being an ul-

@* denotes

the translation of ¢ by C(B) , RB,z . The symbols

®,¥ will be written without indices, too.
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Theorem 1. Mn (C(B), Ry ) -

Proof. We use Metatheorem 1 § 2 (F,  is complete by Th.
1§3).11r xe CCB) put/y,-qu(x)ncp(x)(B)-
2) It follows from lemma 5 in § 3. 3) follows from metatheorem
4 in § 3. 4) follows from lemma 3 in § 3. The function kg,
fulfils the assertion on 5) (see also below). 6) follows from
Lemma 6 in § 3 and Metatheorem 2 in § 3.

Definition 2. V (B, = ) denotes the specification of
the classic parametrical model by P = C(B), R= Ry . >
B being a variable for a complete Boolean algebra, z a vari-
able for an ultrafilter on B,

Lemma 1. Let X € CCB) , then ¥ (X)={4 >
ViFfrx=y', xeX} e 2§ -

Lemma 2. Let X € C (B)., Then Clo*(¥ (X)) v
v (AXF) (Y (X)) = §(x*)) .

Proof. The case X = 0 4is trivial, suppose X %+ 0 , It
suffices to prove ( Vix*)(Agy*)(¥W(X)nP(x*)= F (%)) .
Put S, =Xnec, . Let h_ be the function whose domain is
s, and such that A (x) = 1 for every X € S, . Evident-
1y ‘y(X)nx‘Umé(h‘). Let g€ C(B)., Let a be a sub-
set of & (q ) such that the condition 1 in Def.l § 1 holds.
There i8 an oo & Om  such that a Nn ¥ (X) e & (h, ) -
Put f=Q n* h . Obviouwsly, () =¥(X)n & (g) .

Theorem 2. Let B’ € L (B) . Then McL*(¥(C (B7)).

Proof. First, we prove Compa* (¥ (CCB’)) . Let
fe ¥Y(C(B’)). We may suppose f € C (B’ ). Let g exf,
lcee FIg e e =z . We have V{Ffa i, e C(BI}ez

and consequently
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VIFFge TAFMf =4, meccB)]x« VIiFg e q7,
helClBIy S VIFrg a & e, hel(n),
ke D(h)} £ VIFMg = 47, e C(B ez >

icee. g € W (C(BY)) . The condition 2 is fulfilled by the
sets gi: constructed over B’ . 3) follows by the Metatheo=
rem in § 4.

Theorem 3. kad*(f)= V{Fr¢= k', aelnte x -

Pioof. By the preceding theorem, Mcl™ (¥ (—C—-(_E:T) , and
- Ord (x) is an absolute formula.
Lemma 3. k., 1s the number @ of V(B, z) -
Theorem 4. The axiom of choice holds true in the complete
submodel of V (B, =z ) getermined by the class ¥ (C(B"))
for every B’ € L (B) .
Progf. Let A, be a one-to-one mapping of the class
iR, € On} onto C(B’).Let g € A= (I, +)(<HF,
k,>e A & g = <f, R D. ). We prove that ¥ (A) 4is a map-
ping of the class of ordinals onto Y(C(B’)) in esense of
VB,z).Let <f,,qg % e* ¥W(A),<f,3>*e* ¥ (A),
let £ +* f, . Then 04 FIf & f &<{f, @ =Ch, ,h>&<f,,9)=
=(h,, > for some A, M, , & such that K = k. ,
(b, S YEA ,Chy,kde A, 1e. Frf, +f, & £ = £74 0,
which is a contradiction. Hence Un™(¥ (A)) . Let
fe¥ (C(B?)), tie. VIFT¢= b, h e C(BIIe .
Then there is a set {u; , < € & § of elements of B and a set
{h;,ielr}c C(B’) such that © & 1, ; A Aty - 0,

My & FMe = ;7 amd V{iuw;, , i€ &3 e z .
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Using the fact that Fp is complete it follows that there is
a k such that &y = Flk = d,7 | where &, =C(A"A,; , o, . -
Lvidently, & € C (B”’).Hence, ¥ (A) is a WV(B,z )-uap-
ping onto C CB’), It remains to prove that ¥ (A) is a
class in the sense of ¥ (C (B7)) . We prove

(Vx e ¥ (COB ) (344 € WCBNI(Y(A)A Py (x)m By (34)) similar-

ly as we have proved Lemma 2.

6. Cardinal numbers of the model V (B, =z ) .

Defipnjtionl. £ € C(B) is said to be a relative-
1y cardinal number of V(B,z) irf V{Flf=k', « eNje 2
( N being the class of all cardinal numbers).

Lemma 1. f € C(B) 18 a relatively cardimal number
of V(B,z) if and only if f 4s a cardinal number in sen-
se of the V(B,z )-model-class ¥ (T(—é:——)) .

Proof. See the Metatheorem 3 in § 4.

Lenmms 2. Every cardinal numt;er of V(B,z) is a relati-
vely cardinal number of V (B, z ) -

Proof. See § 1.

Definition 2. A set {w (9, 0"), y<a, &<, }
is said to be an  ( o, /3 ) -system in z 4ff there is a & €
€  such that
1) N+ No>w(,)Aw(r,) =0,

(1°) o) + > w (¥, )IA w(y,d;)=10,
(11) Viw (¢, ), ¥ < a }= W&, tfor every d < >
(11°) Viw (9, d'); F <@, j=w. forevery yp<al-

Iheoren 1. Relatively cardinal numbers K., , lb“,/‘

nave in  V(B, x) the same cardinality if and only if there
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isan(a, B ) =-system in z .

Proof. Let ,bw‘ , Jbﬁ,ﬁ have the same cardinality in
sense of V(B,z). Let @(x,a) , @5 ) be an elementary
formula saying " x is a one-to-one mapping of &l
Then there 1s a f € C(B) such that 9*(f, %y, kgﬁ ).
That means that < = Flg (f, ko » ‘*'w,, )

Put,for T(Q‘,d"‘c.)ﬁ,W(g"’d')-u/\Fr:kJ(ﬂd_,Gp-

orto ay, "e
€ Z

Evidently, w (9%, 0") forman (o,3 ) -system in z .

Let, conversely, {w' (9,0%), 9 < QA &<, } be
an (o<, 3) -system in %z , let u be such that (1i) anad
(11° ) hold true. The function f 1is defined in the following
vay: £ (R, oy )= w (7,0 ), £ undefined otherwise. We
have Fg (¢, Je) , &a, 7' = 4t € Z , hence g*(f, ky, , Ry, )

Lempa 3o If there is an ( &, B3) -system in 2z and
® £ x, £ B3 £ f3, then there is an («,,/3)-system in 2z .

Progf. As k"’ov and k,_,‘ have in V(B, z) the sa=-
me cardinality, the same holds true for ,ka," ’ .loa,ﬂ1 .

Refinition 3. Let @ & B . We define Ex, () = (VX,
yealdx+yrxAn=0).
@ (B)=minday,1(Ia)card am=¥c & Exy(a) & a < B)3 -
Lemma 4. @« (B) 1s a regular cardinal number.
~ Progf. See [3); the proof given there for topological spa-
ces may be easily modified for complete Boolean algebras.
lepoe 5. Let (< (B) £ @, . Then there is no(«x, /)~
system forany /8 # « .
Progt. Let {w (7,d), re<a) & F<ayi be such an
(«,f3) =system. First, let o« < 3. Put 2y = {d, w(r, )+
#0&d<wy}. It follows card @, < @ (B ) . Hence

card (UfQp ¥ <@g }) < 0‘6 . Consequently, there is
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a < ay such that ¢ ay for every 97 < &) . That
means that w* (9, o) = 0 for every 79~ < &) , which is a
contradiction with (ii). _

Let 3 < oc . By the preceding part of the present
proof, we may suppose W, < @ (B). Put a .={7,w (7,
d)#0&7Y< &) §.Evidently, card @, < @ (B). 48 @ (B)
is regular, cardl (U{Qy,d<ca)y $) < e (B)S @, and there-
fore 1s a ¥ < &,  such that 7y ¢ @, for every d'<
< &) , which is a contradiction with (11 ).

On the end of [4], an example of topological spaces de=
pending on two cardinal numbers &, , &, 1is given (the con-
tinuum~hypothesis assumed) such that the following holds true
for the algebra B of all open regular sets:
| Let @&_ be regular, ?cx‘ < cf(xz ) . Then
(1) w(B)< Xg,s > hence there is no (7, J7) -system in

B for ®, 2> %45, 9 F+ 7 |
(1i) further, there is no (7, 0”) -system for K,< &, ,

I+ 7,

(1i1) but there is an (o ,/3) -system in B .

7. Cardinalities of power-sets in V (B, =) .
Definition 1. Let x & B, v € B ; we define x A A 7=
= {fwA v, wexi

Definition 2. R(X, ) =. uwu €B & xs B &
E(VYI(0 4 v £ > An v+ {0, v$§)

(read: x decomposes u ).
Theorem l. Let a be a set of cardinality X_. Then
(p#(/bq_) .*A?(M = (3L T e )R u)&eard&r<y),
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Proofe. Let there exist &4 € x and b such that
cand & £ %, and b decomposes u . Let £ be a func-
tion mapping the set {k“, X €Ea& x + 0} onto b,
Evidently, £ € C(B), £ * &, -

Suppose + e€* hp&) . Then there is a v, 0 + v £ w
and 44 € @ such that < FMf= ,k,,," « X € 7 implies

F"',k,‘x € £f1 2 v, lees F(MRIA v=2; X é 4 implies

{-(_sz)s O hence rAAv =1 0, 2§ which is a contra=-
diction with R (&, 4 ) .

Let, conversely, f’(&w) % &9@,) . In any case zk;?(‘)s*
g* .’(D*(J&w) ; hence, there is a f €* P* (k, ) such that:
fé*hp,, » Put w=FTfé¢ Sy ). Evidently w € .
Put &= W ($#).If R (A&, 4 ) did not hold then there would
exist a v, 0 & <4 and 44 € a such that v < F"-f-‘-/k;'.
This would be a contradiction with the definition of u .,

" Defipition 2. Let »ﬁw" be the cardinal number of V(B,z)
which is the cardinal of P*(k, ) in V(B,z) . '

Lemma 1. caxd™ (&, ) <* Moy,

Definition 3. B (B)={x, % .EB&a%&dx £8. 55
Rs(@a,«4,x)=.a S B (B) &(Yxea)R(Xx,u)&

(VXY €NV )0+ v S UL XBIYes XAANV $y AAV)

(say, a 1is a sytem of substantially ﬁifferent &« =systems
' decomposing u ).

Theorem 2. (Ja)(Iw)(Re(Q,u,x)& card a = 2,)—>
— aaxd.*(lo%) <* Avgy,

Proof. Let, for ¢4 e , ﬁ,_ be a function mapping the
set {&,, > <c, 3 onto ¥ .Let r be a one-to-one
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mapping of &), onto a. The function g 1s defined by
the equivalence g (< £, , R, 5 )=1= 4 =1 (y), otherwi-
se undefined. Evidently, g- € C(B), Let = J’*(le,w‘ ).
Let ¢ (X,4,=x) be an elementary formula saying " x is a
one~to-one mapping of y into 2z ", Evidently, « <
5Frc';(9,&w¢3',hence o* (9’:’*10‘, £), 1i.e. /k‘,n S* by, -
(We prove e.g. that 4 < FTg is a mapping ' . Let

A FT(3h, ke, k) (b + Kk, & Ch ke, >eg&Ch, R >eg'+ 0.

Then there are 44,, %, , %7, 72 such that 2, = 7;

and v = FX4y,, Ry 2 g & <y, Moy, Ve &y, sy 'Aus.
Let g € 4, ; let 9~ be such that g = fy (4. )= FlR, € f“:.
We have F7Ryef, ' Av=Flk efy, 7 A v , hence gave
€Yy ANV, lieey Yy AAW = ng, AA v, Which 18 a con-

. tradiction,)
Lempg 2. Let Mel (M) let the axiom of choice hold in

the sense of M , Let caxd™ PM(a )< @y = caed P(oc) . Then
there is an @ € (P (ax )-M ) such that caxd @ = )
and, for every 44,,%, € Q, 4, # 4, , there is no relation
k£ € M such that £y, = %4, , seay there is a system of
M-substantially different M-nonconstructible subsets of o .
Broof. Let caxd™ PM{a@) = @Y .  Then there are
w:', < @, relations « € Pl ) A M . Let us have
subsets 4. (c € <&, ) of of such that 4, ¢ M, I+
»>(3ne Mgy, = 2'a, ). Put Ye(P(x)- PHex)) -

~{4,(AneM)(I < €)Xy =1" 4, ) . Surely, Y+ 0; choose
4 €Y. Take a ={qy,, < a, § -

Remark. Note that the property <, (@, &), , « ) saying
" a is a system of &, M-substantially different M-rioncon-

structive subsets of o 1is equivalent to an elementary for—
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mila (we may take fVy(x)s3 M instead of M ).
Theorem 3. %&<**”n<*}k¢? (3a)(3uez)Rs(a, u,a)kcardaxt)
_Broof. Ry, <* Ay, implies the existence of an f =*
s* PChk,, ) such that, in sense of the model V(B,z), £ 1s
a system of kwﬁ ¥ cCcCB,?) -substantially different
Y¥(C (B,)) -nonconstructive subsets of k,, . Evidently,
there i3 a g € C (B) such that gv*(g,,,k,%,;) (@
having the same meaning as in the proof of Theorem 2). Put
AL F'r';(g,k.b,f-)&g,(ﬁk%, —'b‘-,‘?,CIearly, “ € z . Let,
for every ¢ < Gjy , fp  be an element of C(B) such that
te*f, <ty M, >y €* g . Put a={W(f,), r<
< @, § - Ve may suppose all the f,.’'s to be defined
only for some #fe., "< . Then @ € B (B). For eve-
Ty ¥< cay, Rs(W (£,),u) holds. If we prove W(f)Anv4
* W, )AAV for every ) + v £« and 9 # 07, then
both Rs(a, &, ) and card @ = ¥; Wwill be proved. Let
Wt )anve WiE.)AAv for some v < i, 3 * O,
v, d'< @y . We defi?e«a relation r by the equivalence
yyden=.f (R )IAv=f (R )IAV.Then k, is arelation
in sense of ¥ (C (B,)) with the property contradicting to
v & Flg, (f,—h%, lo“,‘cP .

Repark. In [4], an example of topological spaces depen—
ding on two cardinal numbers &, #, 1s given (the conti-
nuum-hypothesis assumed) such that the following holds true
for the algebra B of all open regular sets: Let 5 be re-
gular, & < ¢f (4, ) . Then
(1) There is no (¢, o) -system for any 7" + 0 ;

(11) If X, < M. then, for every 4 > O , there 1s no

a s P, (B) decong.oaléx;e_ u ;



(111) If %, & K < ef (x,) , then, for every « >0,
there are systems of &, substantially different o -
systems decomposing u , but there are no greater systems
of such systems;

(1v) If ef (Hp) £ Ky S¥s0 Y > Hpyy then, for
‘every 4 > 0, there are no systems of s, substan-
‘tially different 7 -systems decomposing u ;

(vi If %, £ Ky, Ky > Xy then, for every i > o,
there are no systems of X, substantially different

~ =-systems decomposing u .

8. Free ultrafilters

Defipition 1. Let B be a Boolean algebra (not necessa-
rily complete). Denote the set of all ultrafilters on B by
S(B). If 4 € B then «’= {2z, 2€ S(BI&u ez},

Legma 1. The set { 4°, 4« € B # 18 a closed-open basis
of a compact Hausdorff topology on S (B) .
Remarke S (B) 1is understood as a topological space

with the topology defined in Lemma 1.
Definition 2. Let Mel (P) , let the axiom of cholce

hold in sense of P ., B' denotes a complete Boolean algebra
"in sense of P,

lLempg 2. B 1s a Boolean algebra in sense of the set
‘theory. '

Definition 3. The set V(B ) of free ultrafilters on
B 1is defined by
V(B)=5(B)- Ufaw'- U{v°,v€eal, weBa w =

=V{v,qr‘q,;&a.$P}‘
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Lemma 3. The set «°- U{ v v e a3 is closed
and nowhere dense in SCPB) for every « € B,
Vv, vreal = w«w.

Lemms 4. V(B) = S(B)-U{fw’- U{v’,veal, e
e B&u=V{v,vreal & a e P &Ex,(a)} .

Defipition 4. A set &r= B 1is said to be a pseudo-basis
of B iff, for every non-zero element u of B , there is a
ve &, v+ 0 suchthat v < w« . 2(B) is the cardina+
lity of the least pseudo=-basis. '

d (B, &)= card{a,a e P EX (@)% as4}; d(B)is the minimum
of all d(B,4&), where b 1s any pseudo-basis of B such .
that caxd &r = 2 (B) .

Lemma 5. If S(B) 1is not a union of d(B) nowhere
dense sets then V(B) =% (0 (i.e., free ultrafilters ex-
ist). ‘

Lemna 6. Let card (PP(B)) = %, . Then V(B) is
the complement of a set of the first category in S(B).

Metatheorem 1. Let ¢, (X ) be a normal formula saying
B 1is a complete Boolean algebra". Let <« ( &) be normal,
let 3 be a closed normal. Let the conjunction ¥ & (3 x ) (wix)&
& g, (X)) be consistent with the set theory. Then the fol=-
lowing is consistent with the set theory:
(1) There is @ P such that Mel (P), P and
(11) there 18 @ B such that @ (B) & ¢'(B) am

(141) V(B) 4 the complement of a set of the first catego-
ry in ) ( B)Y .

|
Proof. We deal with the set theory with the additional

axiom Y & (AX)(P(X) & &£, (X)) . Let B be a
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complete Boolean algebra such that < (B), let card P(B)=
= M, . We construct a V/ -model such that k., is count=-
able in sense of this model. We prove that (i) = (1ii) hold

in this model. Put P = ¥ (_C-_(_E:_’-) . k, is a complete

Boolean algebra in sense of the V -model-class P and ¢ (B)
holds in sense of this class, hence, (i) and (ii) hold. The
condition (iii) follows from the fact that k is count=-

. £C8)
able in sense of V .

9. Reduction of the sheaf of functions in a free ultre~
filter.
CP(B) denctes the sheaf of functions constructed o-
ver B € P in sense of P, P being a model-class.
Definition 1. Let *x € V(B), f € C(B) . The sets
w(f,z) (the value of f in 2z ) are defined inductively
with respect to © (+) .
w(l,z)=0; w(t,2)=4{w(g,z),f(grez}-
Fuw ther, put W:-{w(f,z), fe CPCB)} . (We wri-
te shortly W, instead of U: o)
Lemma 1, Comp (W, ) .
Lemma 2. x € P implies w (ky,z) = X .
Metatheorem 1. Let ¢ (X ... 4 ) be an elementary form-
la. Then the following is provable in the set theory: For eve~-
ry #,..., g € cPcB),
FFrg (t...g)' e z = cyw"i(w(\c,z Yyeers w(g,z)).
~ Progf. If ¢ is atomic, i.e. ¢ 18 £ € @, then the
theorem is proved inductively with respect to mmax (p (£), ©(g))
(and using the fact that if the theorem holds for all £ ,

g€ c(cB) such that p(+’)<9(9)-o\'. then
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F<rf{eg'ezxzms wi,z)rw@,z)holds for all £,g € CCB)
such that max (p (£), P(g )) = ac ) . Further, the Metatheo=
rem is proved for every & by the metémathematical induction
with respect to the recursive comstruct ion of [

Theorem l. Let 2z be a free ultrafilter on B € P, where
P is a model-class. Then Mef (W, ) -

Depotation. Let ﬁ be an extension of the set theory such
that the existence of a model-class P (such that the axiom of.
choice holds in sense of P ), a Boolean algebra B complete in
sense of P and an ultrafilter 2z on B free with respect to
P 1s provable in ﬁ . .
ACP, @,z) denotes the specification of the complete paramet-
rie model of = in 3 by the condition X = WS> . (Let
us stress the fact that A (P, B, x ) is a standard models)

Theorem 2. Under the assumptions of Theorem 1, let X € P,
4 S X. Then 44 6 W, if and only if there is o (B, x )=func~
tion £ € P such that 4 = {x,, f(X, )€ 2} - '

Broof. Define g on {h,, x € D(+)} by g (R ) =
= £(Xx), Evidently ¢ € CP(B), w(g,2) = 4 .

Repark. After completing this paper I was informed by Prof.
A. Mostowski in September 1966. that Prof.D. Scott proved certain
independence in Zermelo-Fraenkel set theory using also the no~- -
tion of complete Boolean algebras. I don’t know whether our ap=-
proaches are similar.

References
"[1] P. VOPENKA: The limits of sheaves and applications on con-
structions of models, Bull.Acad.Polon.Sci,,sér.
mat.,astr.et phys.,XIII(1965) ,189-192..

(2) - : On 7 -model of set theory,ibid.,267=-272,
. - 169 -



Lﬂ

[3] P.VOPINKA: Properties of V -model, ibid.,44l-444,

[4)
[5]
[6]1 Pp.
71 p.
[8]
(91 P.
[10] P.

{/ =models in which the generalized continuum
hypothesis does not hold,ibid.,XIV(1966),95-
99.
- and P. HAJEK: Permutation submodels of the model
V ,ibid.,XIII(1965),611-614.
HAJEK and P. VOPENKA: Some permutation submodels of
the model ¥ , ibid.,XIV(1966),1-7.
VOPENKA: Limits of sheaves over compact Hausdorff ex-

o

tremally disconnected spaces, ibid.(in press).
- and P. HAJEK: Concerning the V -models of set
theory, ibid.(in press).

VOPENKA: Modeli teorii mmoZestv (in Russian),Zeit-
schrift f.Math.Logik und Grundlagen der Math.
8(1962),281-292,

HAJEK: Die durch die schwach inneren Relationen gege-
benen Modelle der Mengenlt;hre,ibid.,10(1964),
151=157.

(Received December 12,1966)

- 170 ~



		webmaster@dml.cz
	2012-04-27T16:58:56+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




