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Commentationes Mathematicae Universitatis Carclinae

8, 1 (1967)

ON TWO PROBLEMS OF W.W, COMFORT
Zdendk FROLfK, Cleveland

All spaces are assumed to be separated and uniformizable.
A space is called pseudocompact if each continuous function is
bounded, or equivalently, any locally finite family of non-
vold open sets is finite. By an n-cube of a space X , desig-
nated by X" , we mean the product of n copies of X , more
precisely the product of any family {X [ @ € A} vwhere the °*
cardinal of A 18 n , and also the m-fold product X > ...
XX of X by itself if n is fimite. The purpose of this
note is to exhibit the following two examples.

A, Given a positive integer n there exists a space X
such that X™is pseudocompact but X™***1 is not.

B. There exists a space Y such that each finite cube ¥Y*
of ¥ 48 pseudocompact but Y™  1s not.

To accomplish the picture and also to simplify the proof of
Proposition E below we shall prove, see also [4,p.370l.

Cs The product of a family of spaces is pseudocompact pro-
vided that the product of each countable subfamily is so. (If
the product is non-void, then evidently the converse holds.)

To prove C observe that if {U, 3 is a locally finite
sequence of canonical open seéts in a product space P= X{ R |
@ € A} then there exists a countable A, € A such that
the projection of the sequence { U, } into the space X{F; |
la ¢ Al 1s alsc locally finite. It should be remarked that

this proves C in a more general setting, namely
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vith pseudocompact replaced by countably H-closed, see [3].
Repark. According to the Glicksberg theorem, see [4) or

(2], the properties of X in A can be formlated as follows:

(ﬂ)( )™ 1s a Stone-Gech compactification of X™ , but(BX)™"

18 not any Stone-tech compactification of X™*~

; or equiva-
lently (using the Stone-Weierstrass theorem), each continuous
function of "n variables" admits arbitrarily close approxima-
tions by polynomials in bounded continuous functions of "one
variable" but there exists & bounded continuous function of
"n¢l variables", which does not. The same applies to B . In
the case A there is also the following restatement: C* (Xx™)
18 the n-fold tensor product of C*(X) by itself but
C*(xnt1) is "larger" than the (n+l)=fold product of C*(X)
by itself.

First we shall show that the exhibition of A and B re~
duces to the following examples A° and B’ . It should be no-
ted that A” for n=2 and B’ answer the original problems
of W.W, Comfort. Then we state proposition D, and prove A’
and B’ using D . Finally D will be proved; this is the main
step in the proof.

A® . Given a positive integer n there exist spaces
X(R), k=1, ...,m+1 , such that any cube of any product
X(hy) x ... xX (&, ) is pseudocompact, but the pro-

duet X(1)X .o. X X (m +1) is not pseudocompact.

B’+ There exists a sequence {Y(A)}  of spaces such
that the mroduct of any finite subfamily is pseudocompact but
the product of every infinite subfamily is not pseudocompact.

Proaf of A (using A'). For X take the sum of the family
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{ X (&)} ,wvhere X(k) are spaces with properties in A .
Proof of B (using B ). Similarly let the sum Z of a fa-
mily {Y(;k)} with properties in B’ be an open subspace of a
space Y such that Y = Z 1s a singleton, say (z) , with
neighborhoods of 2z defined to be all U 3 z which contain
all (&) x Y(k) except for a finite number of n .

D. Proposition. There exiats an infinite disjoint collec~
tion @ of subsets of 3N (BN designates a Stone-

Bech compactification of the discrete space N of natural num-
bers) such that every cube of N U A, A € @ ,is pseudocompact.
Exhibition of X(k) in A’. Choose & one-to-one family *
AG)NG=d, m+ 13 in A and put
B(h) =U{A(4)14 % 3, X(k)=N UB(A)
for Kw 400y m +1 . The product of { X(&)} is not pseu-
docompact because N { B (k)3 = @ and so the diagonal
is closed, which implies that the family {({@ | & = 1,...)
m+13)14L € N} of non-void open sets is locally fini-
te. On the other hand if &, + & for < = 1,..., m, then
N{B(k,) > A (k) y and so any partial product is
pseudocompact because it contains a cube of some N U A (&)
a8 a dense subspace, and every cube of N U A(R) 1; pseudo-
compact.
Exhibition of ¥(k) in B'. Let { A(R)} be a disjoint se-
Quence in A and let
B(h)r ULA(3) 15 % A3, Yh)= NUBCK).
Clearly the intersection of any infinite subfamily of
{B(&k )} is empty, and the inmtersection of every finite subfa-
mily contains some A(x) . Thus every cube of the product of any

£inite subfamily is pseudocompact because it contains s cube of
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some N U A(k) as a dense subspace. To prove that the pro-
duet Z of an infinite subfamily { Y (k)| k € K ? is
not pseudocompact we shall show that the family of the canoni-.
cal open sets

Y= Edx=fx (3 MX€Z,xF)=pp for 5 & ki, e K,

is locally finite. Pick a 4 = {4 (k)| R e K} in Z.
If some y(k) belongs to N  then the set E{x Ix ¢ Z ,

X (J) = % (k)} 1s a neighborhood of y which intersects
no U, with m > 4 (&), If no y(k) bvelongs to N ,
then 4 (1) % 4 (4) for some 1 % 3 in X be-
cause the intersectionof { B(R) | k € K ¢ is empty.
Choose disjoint neighborhoods U of y(i) and V of y(j)
in BN . Clearly the neighborhood

E{xIlxeZ, x(ide U, x(#) eV}
of y intersect no Uy, with J > i ,7 . This concludes
the proof., It should be remarked that one could show that each
cluster point of { U(Ak)§ 18 a cluster point of the diago-
nal of Z , and use the fact that the diagonal is closed.
Proof of D . Call a mapping f : N — X eventual-

ly one~to-one (eventually constant) if 4 : (N-M) — X

is one~to-one (constant} for some finite set M . Consider the
set P of all eventually one-to-one mappings of N into it=-
self, For £ in P let f* denote the unique continuous ex-
tension of f to a mapping of 3 N into itself. Write x © ¥y
irf x, 4 € BN - N and f*x = g for some f
in P , It is easy to verify that P is an equivalence rela-
tionon BN ~ N ., It should be remarked that the equivalence
classes are the smallest P* -invariant non-void subsets of

/3N ~ N . Ve ahail prove that the collection @ of all equi-
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valence classes has tm.properties stated in D .

E. Proposition. The collection @ has the proPertj.g
stated in D , card @ = e K, , and card A .
stn &, forany A in @ .

Broof. The cardinal of any A in @ is at most
uf» x, because the cardinal of P is <&¢fr &, and
all the points of A are images under mappings from P of gny
fixed point of A . On the other hand, A is dense in BN -
and so the cardinal of A 1is at least 4ifr &, . The cardi-
nal of AN is & eep x, and so the cardinal of
® is wp 0 2, . .

According to C to prove that any cube of (N U A) is
pseudocompact it will suffice to prove that Z = (N U A)N

is pseudocompact. We shall prove that every sequence { xX (&)}
in NN has a cluster point in 2 ; it will follow that Z is
pseudocompact since NV is dense. Given { X ()} choos
& subsequence { Yy (4 )} such that each coordinate sequence
¥(k) is either eventually one-to-one or eventually constant.
Pick any a in A and consider the point z ={2(bk)} in 2
such that z(k) is the value of (4 (R)* at a if y(k)
is eventually one-to=-one, and the eventual constant value of
¥(k) otherwise. We shall prove that 2z is a cluster point of
{7y (he)} , and so certainly of { x (&)} . Let U be & ca-
nonical neighborhood of 2z determined by neighboz;_hoods
Uco), u1),...,Ulm) of z(0), z2(1),..., 2(n), respectively.
Since any £* , with £ in P , defines a homomorphism on SN-
--N , there exists a neighborhood V of a in 38 N such that
(% (RN*IVIN(NUA) e U (m) ‘
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if ko & m and (k) e P . It h & m and y(k)

is eventually constant then we choose a residual set Nb in

N sucn that y(k) 4s constant on Ny . The intersection N’

of VNN and all the N(k) is a non-void (infinite)

subset of N and clearly 4(i)e U if 41 € N!

The proof is complete.
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