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Commentationes Mathematicae Universitatis Carolinae

8,1 (1967)

ONE MORE REMARK ON REFLECTIONS
Miroslav HUSEK, Praha

First, I must apologize for an unpleasant blunder in
[4]. It is incorrectly stated on page 249 that lemma 2.6 in
[5) does not hold under the given conditions.

There is also a misprint in Theorem 3 in [4]. There must
be X, instead of X in the first sentence.

N

If we investigate the existence of a reflection in X’
of an object X from X, we look for the objects of X’ such

that each morphism f from X into ¥’ (i.e. £ € mx ) can
be decomposed through them. Among these objects we must find
that one with the unique decompositions. If X’ 4is product-
admitting and the embedding X’ — X  preserves products,
then in order to solve the first part it is necessary and suf-
ficient to f£ind a set ﬂx c m)( such that each morphism
from mx can be decqmpoaed through a morphism from ?2:‘, . To
f£ind out the uniqueness we need further conditions. It is pos-
sible to require either X’ to be left complete and the em~
bedding X’ — X to preserve inverse limits (see [2], P-
84) or 7L, to be a set of spimorohisms with respect to ¥
(looe Ef € X’ oand g of =gef , @ €X', g, € ¥’
implies @; = @ ) - see [4].

In this note we shall point out some cases in which the
investigation of reflections is easier. Assume the following
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situation: G 1s a fafthful covariant functor from a category

X, into a cétegory X, X, 1is a subcategory of .'K;, X’ 18

a replete subcategory of X and § [X]/]J c A’ . There are

many questions concerning relations between reflections in X’

and in X’. We restrict ourselves to the following three

questions:

(1) 1s (GY, @ F)> areflectionof &X in X’ provi-
‘ded that (¥, # > 1s & reflectionof X in X, 7

(2) Is X’ reflective in X provided that KX, 1s reflecti-
ve in X, 7 .

(3) Is K, reflective in X, provided that X’ 1s reflecti~
vein ¥ 7 '

The aim of this note is to find conditions under which the an=-

swers are in the affirmative.

Now, we recall the definition of S =functor from [3] and
the main Theorem 3 from [4].

The functor § is called an S -functor (and then ¥,
is called an S -category with respect to g. ) if the follo-
wing conditions are fulfilled:

(a) G+ = g 9 implies £ = f; o 1, where

$f=9 ; . .

) 1r ge X, Q«X =€g (or G,Xsﬂg’ ) then the-
re exists an f € X, such that ¢ « ¢ and X =
=€f (or X =Df , respectively);

(¢) for each object A in X the class g."'[AJ noty X,
is the complete set in the quasi order %= E{<X,Y>l

Mgy s G LHemy (X, Y313

(@) 4r {€,} 1s a family in X, such that Gfy= ¢ for

each 1, then there is an + ¢ H%(M{%},M{Eﬂ.?)
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with Gf = & , and similarly for <nf.

Theorem 3 from [4] (not in the full generality): Assume
that X’ 1is product-admitting. Then each X €obi X has
& reflection in X’ if and only if:

s

(a) the embedding X’'—» X preserves products;

(v) me<X,Y>=#Q for some Y € oty X ;

(c) there is a cofinal set in the class ?ZX of all epimorph-
isms with respect to K’ with domains X (in the order:
f <g it g =hef forasome. e X’ );

(a) each + € Hom, < X,¥Y > Yeoff X’ can be factori-
zed through a morphism from 72)( . '

(1) Let ( ¥, ¥> be a reflection of X in x;’. We want
to know if (G Y, Gf)> 1is a reflectionof G X in X’.
The answer will be in the affirmative if ( fulfils some con-
ditions similar to the condition (b) in the definition of the
S -functor. G f has the factorization property if the fol-
lowing condition holds:

(®)ir g : GX — A, Ae o8 X’ then
there 18 g : X — Z ,Ze€ol; X/, G = 9,9 X/,
In order to get the uniqueness of this factorization one must
require fulfilling of some conditions of the following type:

(B) it o, 9, € Hom,(A,B>, GZ=A,Z€oty X ,then
there s 8 Z € off X/ - and ¢,,9, € Hom; <zZ,z’>
suh that § g; = o, -

(B) ir g 1s an epimorphism with respect to 76,',’ , then
% 1s an epimorphism with respect to X’.

B g+ is an epimorphism with respect to X7.

In the case that X <g. Y’ for some Y’é oty X, the
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condition (o¢) is a consequence of (3).

(2) Let each object from G 7 [AJ (which 1s supposed to
be & non-void set) have a reflection in '3'6'1’ . We want to know
whether A has a reflection in X', Let, for each g: A B,

B e X’ , there exist £ in 76; such that £ £ € .76.,’ ’
Gf = & . Then the images under { of the reflections of
objects from g."’[A] form a set 7ZA with the factorize—
tion property (see the introduction). But it is possible to
use algo the result of (1), If G '[A] has the least object
X, in < , then the condition () is fulfilled for X =
= X, . Thus, if @ satisfies a condition of the type (48),
A has a reflection in X’ . In a special case we shall get
the following statement:

Theorem 1. Let the class Q-‘deJ be a non-void set with
a least object X, for each A € o8 K ama X, € o X
for Ae oy X’ .

If § satisfies the condition (b) for the ranges (i.e. the
case G X =€ g only) in the definition of S -functors,
then the reflectivity of X, in X, implies the reflectivi-
tyof X’ in X .

Remark. The existence of X, and the fulfilling of the
condition (b) for the ranges is equivalent to the existence of
a full embedding of X onto a coreflective subcategary ot X, .

(3) In what cases the reflectivity of XX/ in X does
imply the reflectivity of JC,’ in %, 7 For an answer to
this question it is possible to use the inductive generation

in x; by means of a morphism with domain in 76; . The exis-
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tence of this generation implies the reflectivity of x; in
X, 1n our case. But we shall investigate another way using
Theorem 3 from[4].

We restrict ourselves to the case ofy X = G 5063 -IZ,J,
VC;- g"[JC’J . It X, 1s product-admitting and § pre-
serves products, then the embedding .16‘1' —» X, preserves
products too and, hence,the condition (a) of Theorem 3 from
[4] 48 fulfilled. The verification of (b) is often very easy
and we shall not deal with it. The condition (d) will be sa-
tisfied if § fulfils the condition (a) from the definition
of the S -functors. If § '[AJ is a set for each A &
€ o6} X", then (c) 1s valid and, hence, X, 1is reflective
in 76,', . In this case 4 preserves reflections (see question
).

The condition (a) from the definition of the S ~-func-
tors is too strong (among consequences of this condition one
obtains a [reservation of subobjects and of quotients). But
it 48 possible to avoid this condition as it is shown ixi the
following statement:

Theorem 2. Let obj K= G Lob; X, 1, X« ¢ L%k,

~let X, be product-sdmitting and X’ reflective in X .
Then X, 1is reflective in X, if the following conditions
are satisfied:

() & preserves products and fulfils the condition (b)
far the ranges in the definition of the S ~functors;
(v°) UfHom, <X, > 1Yeoti %5 # ¥ for each

Xeoy X ;

() there exists a faithful functar & from X'  sucn

that $¢ § 1san S -functar;
133 -



(4°) each ¢ € X w:lthﬁ €€ &8 X’ can se factorized as
£ %, where €, ¢ JC’/ is projectively & -generating (see
[3]), ¥, belongs to a set Jlg, of epimorphisms with res-
pect to X’ .

Proof. The conditions (a”),(b”) imply the conditions (a),
(b) of Theorem 3 from [4]. We shall prove that the remaining
conditions (c),(d) are also valid. Let X € ol K, ,f: X+ ¥,
Ye 06; x,' . It follows from (d°) that G* can be facto-
rized a8 f, ¢ f, , where {, is projectively # -genera-
ting and f, € ?ng . It is possible, by (¢’), to factorize +
@ g, * g, , where @, 1s projectively F o G -gerera-
ting and (9":} ¢lg,; = 3'-;'1: . Since ( fulfils the con-
dition (b) for the ranges, it preserves projectively generating
mappings and, hence, § g, = f, . Consequently, §g, = f,
and, hence, also the condition (c) is fulfilled (it follows from
(c”) that G "[7T;, ] 1is aset).

Repapk 1) It is not necessary for % ¢ G to satisfy all
the conditions of the S ~functors. 2) The condition (a’) is
fulfilled in the case that X is a coreflective subcategory
of J; snd ( 1is the right adjoint of the embedding X —
— 361 . The subcategory 76;’ of 76:, is then composed of those
objects and morphisms the coreflection in X of which belongs
to X',

Examples: Theorem 2 can be used e.g. in the case that X,
is the category of quasi-uniform spaces (see e.g.[1l] for defini-
‘tion), X = Top  and X’ 1s the category of 7 -spaces
(i=0,1,2, 3) .
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We shall show a pattern of a construction of reflections
in the case that J(:, is the category of syntopogene spaces
(see(1])y, X = Undf and X'’ is the category of complete
Hausdorff uniform spaces. This case is solved in [1] but that
construction is rather complicated. It is very easy to useTheorem2
and to apply it also to other drfinitions of completenecss (not
only to that used in (1]).

All the conditions of Theorem 2 are fulfilled (it is bet-
ter to use Remark 2). Hence, every syntopogene space J° has
a complete separated reflection ¢ v!’, fp > . We want to
know in what cases the mapping f, 1s an embecding. Since .
9 & is separated (in the sense of (1), 7 nmust be sepa-
rated too. We shall show that this is just the case. If 7@ 1is
separated, then 'f"g; must be one-to-one (because for each
x,yeﬂ-} X %4 there exists a continuous mapping £ from
J into a complete separated syntopogene space such that
tx $ "P'y.« ). It follows easily from Theorem 12.41 im (1]
that ﬁ, is projectively generating (it is possible to find
a continuous mapping f, from 7 into a complete sepa-
rated space Q<° for each <, from the structure of J°
such that <, < 'F;: (<) for some < 1in the stnuc-
ture of Q<° )o Hence fp 1s an embedding.

If 7 1is not separated then fp  is not one-to-one. In
this cese too, it is possible to find a completion with the ex-
tension property (of course, these extensions are not unique).
Let us denote by < 2 (P, @, > the separated reflection of

P and define ¥ P= Pu (vt P-2P), f: P—>.FP
to be the identity mapping on X, 7:3P > veP to
be equal to 9’4, on P and being the identity mapping on
: - 135 -



(» ¥ P-v P). The structure of F P is that one projecti-
vely generated by ?—J . Because the mapping Za 4 = «Erm ° Jp
is projectively geherating, it follows that + is also pro-
jectively generating and, hence, an embedding. It is clear

that the completion (5 P, 4 > 1is augmentation-separated
(separated with respect to 9° in the terminology of [ 1]).

It J° is separated, then ¥ P = » P .

Now, we shall prove that this completion has the extension
property. Let a continuous mapping ¢- from J° into a comple-
te syntopogene space Q be given (i.e. the uniform coreflec-
tion of q, is complete which is equivalent to the double-com-
pleteness in the sense of [1]). We have the following commuts~

tive diagram .

fop tg
vePe—meo 2P — 5 »q

B

f ¢
. There exists exactly one continuous mapping A : v = P—y 2 Q
such that ¥g = A » £ , . Réw, it is easy to define a
mapping K : ¥ P—» @  such that g = b o f,%0ﬁ=h°z-
Because A o 3/ is continuous and 9% is projectively gene~
rating, the mapping ﬁ is continuous. This extension z of
g 1s unique if.¢p = % (d.e. if G 18 separated).
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