Commentationes Mathematicae Universitatis Carolinae

Ales Pultr

On selecting of morphisms among all mappings between underlying sets of
objects in concrete categories and realisations of these

Commentationes Mathematicae Universitatis Carolinae, Vol. 8 (1967), No. 1, 53--83

Persistent URL: http://dml.cz/dmlcz/105093

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1967

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/105093
http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae

8,1 (1967)

ON SELECTING OF MORPHISMS AMONG ALL MAPPINGS BETWEEN UNDER=-
LYING SETS OF OBJECTS IN CONCRETE CATEGORIES AND REALISATIONS
OF THESE
Ale$ PULTR, Praha

Introduction. Let us begin with a simple example: If <
is a partial ordering on a set X, define a topology Z (<)
on X as follows:

U is open iff for every X € U 1ysx impliesnye L.

Let us take notice of the fact that if (X, < ),
(¥, <) are two partially ordered sets, then, among all the
mappings of X 1into Y, the continuous mappings with respect
to £ (=), Z(3) are exactly the isotone mappings with
respect to £ , < . Thus, the structure of topology is, in
certain sense, richer than the structure of partial ordering,
namely, if a system of mappings of X into Y may be descri-
bed as a system of all isotone mappings with respect tc¢ par=-
tial orderings, itlmay be described as a system of all éonti—
nuous mappings with respect to suitable topologies.

For a moment, understand under a structure anything taking
part in selection of “suitable" mappings. We shall deal with
replacing of structures by other ones, richer in the sgense
mentioned above (i.e., agble to describe at least all the sys=—

tems of mappings which may be described by the former ones).
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We shall now reformulate this in the category language.
Usually, the term "concrete category" is used for a catego-
ry & such that there exists a faithfull functor from £
into the category of sets (the 8o célled forgetful func-
tor). Let us agree to understand here under a concrete catego-
Yy & category together with a given forgetful functor (for the for-
mer notion we may use the atribut concretisable). Roughly
épeaking, objects of concrete.categories are sets (endowed
by atruc‘cufes) and morphisms are some mappings between the-
se sets. We say that a concrete category (5, D) 1is rea-
lisable in (£; O7) (O, O’ are the forgetful func-
tors), if there is a full embedding & : £ =» & pre-
serving the underlying sets and the actual form of morphisms
(see definition 1.1 in § 1). The example above may be now
formulated as follows: The category of partially ordered
sets and their isotone mappirgs is realisable in the catego-
ry of topological spaces and their continuous mgppings.

Another example: Among the results of [1] is the (other-
wise formulated) fact that a number of topologylike catego=-
ries is realisable in the category of merotopic spaces.

Let us recall some definitions from [2]. If ., 4
are o -nary relations on X, ¥, we say that a mapping
f: X —Y is & » -compatible, if, for every {X, |L < i€
en, {f(x )L < )€ A . (i remark that a unary relation
is a subset of X ; hence, if %, 4o are unary relations on
X ,Y respectively, f: X — VY is £ 4 -compatible iff
fln) < H )e A type A={x,,l/3<9*} is
a sequence of ordinals indexed by ordinals. # = { N ?

is said to be a relational system of the type 4 on X
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if, for every 3 < g, X, 1s an og, -nary relation on X3
if X,/ are relational systems of a type A -{d, IB<¥s
on X,Y respectively, we say that £f: X > Y 1s £ A=
compatible, iff it is /4, A, -compatible for every B <2
Let F,,..., F,, be functors from the category of sets in-
to itself, A,,..., A, types. S ((F,48,),--- >
(Fy, A, )) 1is defined as follows: The objects are sys-
tems (X, %,,..., N, ) where X; is a relational system
of the type A,- on F; (X); morphisms from (X, /%y, /4, )
into (¥, Ay9¢7.yA, ) sre mappings f: X — ¥ such that
F; (£) are x; A; =compatible for covariant F;, A; 4 -com-
patible for contravariant F; . (More exactly, the morphisms
are triples ((X,%y,..., £, ), F, (Y, 8, -5 /,)) ).

Many important concrete categories may be considered as
full subcategories of categories S((F;, A,), ..., (R, 4,)).
Some examples:

1) The category (L (A ) of all algebras of the type
Aafxy |3 <y} is a full subcategory of S((I, X)),
where I 1s the identity functor and 4 = {+ 118 < 7§ -

2) The category of topological spaces and their continuous »
mappings is a full subcategory of S((P°, {1})) where P~
is the functor associating with every set its power set, and,
with every £ : X —= VY, P ($): P7(Y) — P~(X) defined
by P (+)(A) = £77CA).

3) Similarly, the category of uniform spaces and their uni- ‘
formly continuous mappings is a full subcategory of S ((P'Q,
{13)) where G (X)= Xx X, @ (#)(xX, Y )a(#(x),+(1).

4) The category of topological groups and their continuous

homomorphisms is a full subcategory of S ((P% {13,(I,{33M.



5) The category of merotopic spaces (see [1]) is u full
subcategery of S ((P% P+, £13% ) , where P*(X) =
= {A 1 AcX}, P'(4)(A) = £ (A) (the image cf the set A ).

6) The category of prox}.mity spaces may be coasidered as
® full subcategory of S((P* {2 }‘ )) (if the proximities
are dofined by the relation "to be near") or of S((P~,{2})
(if the proximities ars defined as the relstions "to be far"l.

. 7) The category of differentiable manifolde and their

aifferentiable mappings is & full subcategory of S (( 31 , 113)),
were R (X) = E), R (#)(g) =gt -

8) The category of topological spaces and their open con~
tinuous mappings 18 a full subcategory of S((P7, {13),(P*, {13)).

In the examples we met some particular set functors (I,
P, P+, 4, R, ). '@ is a special case of @, defined
by G, (X)= X4, Q, (@)= fo @, @1 is a special
case of [ defined by R (X) = A*, B (#)(p) = g f.
Denote by K, the functor defined by K, (X ) = X = A, K, (f)=
=fxid, ,by V, the functor defined hy Y, (X)= X x{0ju
U Ax {1}, Y, (#)(x,0) =(f(x),C) for x e X,V (f)@, )=, 1) .
for a € A. .

In the present paper we shall dcnl with representations
of SWUF, A, (E” A, ) such that the functors f:
are obtained from the mentioned ones by operations of composi-
tion, cartesian product ( X, see § 2), join ( v , see § 2) anda
further operation defined in § 2. The mein result is that such
S« F-;','*A',‘ ), , (Fy 4, . is slweys realisable in
su(PYS Y, 5 {1})) with e sufficiently large natural number
A& and a set A. This is stated in Theorem 6.5 in a somewhat

move general form.
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§ 1 contains some definitions and a particular caee of
realisation following from [2]. In § 2 the mentioned opera=
tions with set functors are described. § 3 contains en auxi-
liary notion and some statements concerning this. In §§ 4 and
5 the functors obtained fram I, V,,K,, Q,, R, P, P¥
are discussed and a canonical mjorigation of these is .found.
In § 6 is proved the main theorem; as an easy consequence we
obtain a theorem on boundability (i.e. full embeddability in-
to categories of algebtras, see [2),[3]). § 7 contains scme
remarks, in particular two examples of realiﬁations (namely,
of S(8,) in S(P ) with sufficiently lurge B and of
S(P-)an S P*+)) ) not following from the previous
theory.

§ 1. Some definitions and potatiopg.

As stated above, in the present paper a concrete category
(&,0) 1s a category together with a fixed forgetful funocter.

1.1. Defipition. Let ( ®, O0) , (R, O') be conorete
categories. A full embedding (i.e. a 6ne-to-one covariant
functor onto a full subcategory) $: R =» R’ is =ald to be
a realisation of (R,0) in (R’ O’) af

Oed =0 .

We write then § : (% ,0)=p (®’,07).To indicate the rea
lisability of (R, O) in (R’ O"),i.e. the existence of such
$ , we write edmply (R ,0) = (®’, O7) .

1.2, Remark: Obviously (®,D)=3(®’, O’) and (R’ O3
2R’ 0f)iwply (R, 0) = (®R*,07).

1.3, Copveptiona: We write simply S(F,..., F, ) instead

of S(CF, {11 (R, {11 (see Introduction). Thus,
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if e.g. F 1is a covariant functor, the objects of S (F )
are couples (X, n ) ,where £ € F(X),and f: X > ¥
is a morphism from ( X, 2 ) into (¥, A) iff F($)(r)c A.

The category S ((F,, 4,),...;, (F,, 4,)) 1s always con-
sidered to be endowed by the forgetful functor associating
X with (X, n,,...,%, ) and f with ((X, 2., s %n ), ¥,
(Y,hqyee03%,)) (88 a rule, we write simply f instead of
(CXyRgyeooy 2y £, (Y, Bgyeey 5 D) )

le4. Definition: A set functor is a functor from the
category of sets into itself, .

1.5. Theorep: tet G, , L 6 J , be set functors, 4
types. Put F = G; for covariant G, , ff = P7e G, for
contravariant G . Then

SH(G ,A ) ed3) == SHH(RE,A)ILed}).

Eroof: This follows easily from the following statement:
If & is an « -nary relation on G (X) , define an oC-na-
ry relation £ on P G(X) by: {A,, le<xje R ifr
(X, € A, rorevéy % ) implies {x, |2¢ < &} é n.
Let #, » be o -nary relations on G (X),G(Y) respecti-
vely. Then, for any f : X — Y, G(#)#)cxr ite P GFIR)C A,
Let G(#)(m)c x,{A,3 € T . We have to prove that
L6UY'(A,365.12 n, € 6 (£)(A,), we have G(f) ()€
€ A, . Thus, {4, }€ 5 would imply {G (f) (g,)j € £
which is impossible. On the other hand, let P G (f)(R)c A
and {4, 3€5; 1L {G(f) (14, 1€ 2 we have {{G () (14,0 )}}€X
and hence {G (#°"){G ($)(%4, )3} € 5 . This is a contra- |
diction, as 4k € G (f)'4G(£)(y,e )} -




§ 2. Operations with set functors.

We shall use the following notation: If X, Y afe
sets, we denote by X v Y the set X <{0} v ¥ x {1}
(a "disjoint union" of X and ¥ ). Iff: X > VY, g: U->Y
are mappings, we denote by £ »< g the mapping of X = U in-
to Y >x Y defined by (f = @ )(xX,«)=(#(x),g(w)) ad by
£ v g the mapping of X v U into ¥ v V defined by
€, vq.)(.x,O)s(F(x),D) amd (fvg)(u,1)= (gw), 1) .
If X, Y aresets, (X, Y)> 1s the set of all mappings of
X into Y (di.e., the set y* ; in the more usual nota~
tion). For £ : X — Y g:U — V define (£, >: <Y, U+
—=2(X,V>by ($,3>(x) = @ootof.

2.1. Lemma: I. (4, xq—,)‘- (f,xg,)=f efy=<gq,°G
id, % 4d = 4d; 1 £, g are one-to-one (omto, resp.),
¥ x g is one-to-one (onto, resp.).

II. (#,vagle(fyvg)mfhoefy Vg g,
4d v id = id ; if f, g are one-to-one (onto, resp.),
fvg 1is one-to-ome (onto, resp.).

III. <‘f’4,94)’<ﬁ,93>'<ﬁ"¢179'1'9'z>’
{id,id > = <d ; 1t f is onto and g one-to-one, then
(¢, g > 1s one-to-one; if f 1is one-to-one and g. onto,
then (¥, g > is onto,

2,2, Definition: Let F, G Dbe set functors of the same
variance. We define set functors Fx G and Fv G by

(Fx G)(X)=F(X)=G(X), (FxG)#)= F(f)x G(+);

(F v G)(X)= F(X) v G(X), (Fy@@#)=F(f)vGH),

Let the variances of F, G be opposite. The set functor

(F,G> 4s defined by
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{F,G>(X) o (F(X),G(X)>, <F,G>(£) = (F(f),G(#)).

Theorem: If F, G are covariant (contravariant), 3o

are FxG and Fv G. If F is covariant and G contra-

variant, { F , G> 1s contrayariant; if F is contravariont
and G covariant, { F, G> 1s covariant.
Proof is trivial.

2.3. Repsrk: The operations Fx G, Fv G are, up to

S -

the natural equivalence, associative. We shall 'rite.x' Fo=
~ “s

eﬁx»:-xﬁ,xF;sEv.-.vEL.Letfb:X‘-—pX (L e J)

be mappings. Define X {f }: X{X lce I3 X{Y Ice Jf

( X{X_ 1L 6J} ete. is the usual cartesian product of the
system) by X{f } ({x3)={f X}, Vif}: VIX l.e Ji>

SVAY, L€ JFCVAX, 3= X x{edlL €30 by VAT 3(x, )= (£, (R, L) .

Now, i for every L € J a covariant (contravariant) functor
F. 1s given, we may defins XF , VF by (XF)(X) =

= X4F, (X)3, XE )= X{E ($)3, (VE XX)«VE (XB, (VE XF)=VEF) .

This is, up to the natural equivalence, in accordance with the
notation above.

2.4, Composition of set functors F 6 G
denoted by F o G .

is, of course,

§ 3. Majorisation of sot functors.

If T: F— G 1is a natural transformation of functors

such that T)'( : F(X) — G(X) 13 one-~to-cne (onto) for

_every X , We say that T 1is a monotransformation (epitrans-
formation). |

3.1. Defipition: Let F, G  be set functors. We write
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F 3 G if either there is a monotransformation T : F —
— G or if there is an epitransformation T : G — F -
We say that F 1s majorised ty G (and write F < G ), if
thers are functors F,,..., F,  such that F= F,, G= F,
md F; 3 F,, tr € =4,..., m-1.

3.2, Remarks: 1) Obviously F < G and G < H imply

F <-H. 2)1f F,G are natumlly equivalent, then F<Gand G < F .

3.8, Metalemma: Let w be a binary operation on set func-
ters such that

1) for eny functor G with a property & F; < F, implies

Gwh 4 Gwh,
2) for any functor G with a property J3 E, 3 F implies
e @3 FwCG.
Let F;, < F, , G, < G, and let either F, have the pro-
perty 4 and G; have the property B ,or F, have thz
property (I ard G, have the propevty J3 . Then FwgqG<

<h w6 -

Eroof is eaey.
3.4. Lemma: Let F,, F, , G be set functors. If F, =

3F,then FLe G 3 F o & .
Progf: Let T: F, — F, be a monotramsformation, Defi-
T e & . r /- /
re T': F G --? Fb*G by 1; TG(X) . Thus, 'T; is
alvays one-to-one. T’ 48 a transformation: Let us prove it

e.g. for coveriant' F, , F,  and contravariant G , the ot-
her casea are similar. Let f: X — Y  be a mapping. Then
G(£): GLY)— G(X) and we have -
(ReGIH)eT) = By (G(£)) e Tgpyy= Topy® F (GH V=T, o (F. GIHF).
Let T: F — E, be an epitransformatioa. Again, de-

tine T': R e & —* F oG by T, = Ty, - Thus, T, 1s
- €1 -



alvays onto. This time, we prove the transformation proper~
ty e.g. for F,, F,, G contravariant. For f: X — Y
we have G(f): GC(Y) —» G(X) and we obtain

(F,e G)(-F)-T;’-E(G-(-F))-Ew- T’ R(GHED=T . (Ee6)P.

3.5. Dafinition: Covariant set functors are said to be
nice, if they associate one-to-one and onto mappings with
one~to-one and onto mappings, respectively. Contravariant
nice set functors associate one-to-one mapping with onto
ones and onto mappings with one-to-one ones.

Repark: Evidently, any compo-siticm of nice functors is
nice.

3.6, Legma: Let F, , F,, G  be set functors, G nice.
Let F; ¥ F, .Then G o« F; 3 G F, .

Proof: Let T: F; — F; be & monotransformation. Defi-
ne T’ vy 'T:\,' = G-C'l; ) .We see easily that this is really
a trensformation, If G 1is covariant, T/ = G(T,) 1is
one-to=one for every X , and T’ transforms G ¢ F, into
Ge F.I1f G 1is contravarisnt, T’ transforms G o f in-
to G+ F, and T;,'z G (T,) 1is always onto.

Analogously for an epitransformation T: F, — F .

3.7. From lemmas 3.4 and 3.6 amfrom the metalemma there
follows

Iheorep: Let F, < G, f < G, ; 1et F or G,
be nice. Then F o F <

2
.

G, (i=1,...,m). Let G,..., G,
be nice. Then F o f;_e.cofeF < Ge G _ °°G .G .

3.8. Theorem: Let f, < f; and G, < G, . Then F, 'x
x G < f x G, -

Broof: It suffices to show that F, 3 F, implies
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FxG3 F =@ and G x Ff 3 G F for any G . ve
ahall nvove that Fy % G 3 F, > G| the second state-ent
follows from this according to natural equivalcnces. iet
T: Fp— F, be a nonotrensformation. Define T': F x G-
4 y v o 4 AP AN
"’F;x G by T;, - 1; x ‘ds(x) . B‘;' ».‘nl, 1; ol B R

to-ope mappings. If F,, f; amd G are covariant, we have

(= G)(E)e T mw (B (#)x (G (£ 0 (T iddgey ) m (R (£) o T)x
x G#)m (T, o EEN=(id o GCEN = T o (F xGIF).

£ Fp, R and G are contravariant, we have
(Ex GI(#)e T/ = (R(£)e Ty ) % G(f) = Tyo (£

xid A o&(#)= T o (FxG)(¢).

Similalrl.sr for an epitransformation T : Fp — F .

3.9, Theoren: let F; < and G, < G, .Then F; v
vG < Rv G .
. Proof: replace the symbols % by v in the previous proof.

3.10. Theoren. Let F; < F; amd G, < G,. Then<(F,,G, > <
<<R,G>.

Proof: Again, it suffices to show that for Ff < F, al-
ways 1) < F, G>3(F ,G> am 2) <G, F,> 3 <G, F, .

1) Let T: F, —F, be a monotransformation. Define T’
T =<T,, zd“x)>, By 2.1, T;" is a mapping of <F;,G> (X)
onto {F,G> (X) for every X ., We shall prove that T’ is

a transformation. If F,, F, are covariamt,G, <F, G) and

2
(R , G> are contravariant and we have

<R, GY(£) e T« (F (£),G(#))e (T, iy > =< Ty o  (£), 66 )=

=<BE )Ty, G(id ) G (#)) = (T, idy ) Yo < F (£),G(F))= T

o<F,GH(4) .
-63 -



1t F,, Fp are contravariant, G, (F,G> and{f, G>

are covariant and we have

<F;,G)G-)-'r;'=<E,'(4),G(¢)>o<7;,£d“x)>-<g C£)e Ty,
gy G(£)> (T;,c'ct«,))f(fi'(f),G(f)>-7;’o (R,G>(F).

Ir T: F'z - F; is an epitransformation, we prove analo=-
gously that T’ defined by T;’ =<7, ‘:dscx) ) is a mono-
transforzation of {F,,G> into ([, G> .

2) Let T:F — F (T: ff — F  resp.) be a mono-
transformation (an epitransformation). i'e prove =asily that
T’ defined by T = (idy,, , T, > 1is a monotransfor-ation
of (G, F;> into (G, F; > (an epitransformation of (G, F, )

into < G, F; >, resp.).

§ 4. Set functops V,, K,, Q,, R, P, P* .

In the present paragraph we shall discuss some natural-
ly defined set functors and deduce some majorisation rules
concerning thems The identical set functor will be denoted
by I.

4.1, Definition: Let A be a set. The set functor V¥
s defined by Y, (X) = Xv A  andaV (f)eafvid, . Let A
be non-void. K, 1is defined by K,(X)= X< A ma
Ka(f) = £ x 4d,, Q4 by Qu(X) =<A,X) and @, (f)=
=<<d, ,¥>, B by B (X) =<X,A)> and B, (F)ulf, d,>.

Pt and P~ are defined by P*(X)= P (X)={ZI|Zc X} and,
for f: X — Y, PH(£)(Z)=fCZ) for every Zc X and,
finally, P (£)(Z) = £-1(Z) for every Z < ¥ .

Remarks: 1) Evidently P~ 1s naturally equivalent with

F, (where 2« {0,71} ). @, 1s naturally equivalent with
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@ defined by Q(X) = X x X, Q(f) = £x f .

2) Y; , K, and @, are naturally equivalent with I.

3) If caxd A =caxd B, V4, is natirally equivalent
with Vy, K, with K;, & with Gy ana R with .

4.2. Theorem: The functors V,, K, and @, are se-
lective; under the assumption that there is no measurable
cardinal, P~ is aelective»X).

Proof: For a definition of selectivity and for the
proof concerning (, and P~ see [2]. By the previous re-
mark and by Theorem 1l from [2] it suffices to prove the se-
lectivities of Yy and Kj for ordinals o .

Let A={x, | 8 < % 3 . We have to £ind types A" and
A", and full embeddings $: S(I,4) =» S(I,A’) ana
Y:S8(1,8) = S(I,A") suh that O e d = V- ¢« O
end O-¥= K. O ( O are the forgetful functors).

Put A= {, B <7+ +1} where ot, = 1 for
3 > 7. Construct & as follows: Let ¢ X, R > be an ob~
ject from S (I, A). Thus, R = { £, 3 1s a relational
system of the type A on X . Define R = { Ky 3 on V.(X)
by
x) That assumption may be replaced by the following, weaker one:
(M)There exists a cardinal O~ such that every o“-~additive mea-
sure is 7 -additive for any 7.
The assumption of non-existence of a measurable cardinal 1s
equivalent with the assumption that &, may be taken for o™
The question whether there has to be an assumption on measurab-

le cardinals at all seems to be open.
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“"“0)355,, irr {x, 3} 6 K, for R< o,
(Z,1)€R . p Aff (z,4i)=(2¢,1) Tor 3¢ < O,
(z,i)e Eqﬁ-d" ifr 4 = 0.
Put Q(X,R)-(\(,(X),R) , &Cf) = ‘;.('F) . It is easy %o
prove that § is a full embedding of S(I, A) into S(I,A).

Now, put A"={xk,1 8 < 9~ +0"+ 1} where, this time,
X, = 2 for 8 > 9. Let R be a relational system of
the type A on X . Define a relational system R = {%, 18<
<y +0+143 on X x 0 as follows:

{(xg,t)}e E, 1ift {Xplen, (for f<p,L<d)
x,0),(¥,A)) ek, 1iff € = A= (for ¢ <)
(x,%),(y,A)) e Rppor Aff X = 4.

Put ¥(X,R) e (K, (X),R), ¥(f) » Kp(f) . Tt is easy to
prove that ¥ is a one-to=one functor into S (I, 47) . 1t
remains to be shown that for every morphism g : (X x R)>
—+(Yxd,8) there is a morphism f: (X, R) = (¥, S5) with
Y(f)=@g. Let g :(Xx d, R)— (¥xd;5) be a morphism.
The formula
g (X, 0) =Ff(x, )

determines (uniquely) a mapping f: X — Y. Denote (y,») =
=9(x,5\~).81nce ((x,A),(x,0)) € E;u-d" , we have
(CY,v), (f(x), )) €5, and hence 4 = £(x), Since
((x,2), (x,ANekx, ,,
hence » = A . Thus, § (X, ) = (f(x),A) for every (x,1),
f.e. g = K, (£). Considering Eﬁ , 75/, with 3 < 7~
we see easily that ¥ is RS =compatible.

4.3. Lepmg: Let ocard A & card B . Then Y < V5,
KA<K5,QA<0. andﬂ<?8.

we have ((4,v),(4,v)) € 5,,, and
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Droof: Let ¢¢: A ~» B be a one-to-one mapping. De=
fine transformations T: V= V,, T K,—» K, T Gp—> 4,
amd T*: B — F by 1}-4301',(‘/9;1}"—":4)("9’
(g, ) wa e (k9> BT,

and T;”’ are one-to-on: mappings and 1.7

X are maprings

onto.

44  Legma: [ <V, I <K,, I <@,

Proof: This follows by 4.3 and Hemark 2) in 4.l1.

4.5. Lemma: 8) P* < P e PT, b) I< P~ P .

Proof: a) First, notice that for every £: X Y,
MeX, NeVY

f(M) e N ift M c £T(N) .
For A c X define M (X,A)={Mc XIAcM}.Let f: X
—~ Y te a mapping. We have
P=(P (4N (M (X, A)={N e P (Y)IP(f)(N)e
eMX,A)3={Nc YI4T(N) e M (X,A)} =
={NecVYIAc ¢tN)}=fNc YIf(A)e N}=
=M (Y, PH(£)(A)) . ‘
Now, define Ty : P¥*(X) —» P (P (X)) vy T, (A) =
= M(X,A) . We have (P7o P7)(f)e T, (A) =
= PP (EN (M (X, ANe M LY, PHENA)) = T o P*(£)(A) .
Thus, T 1s 2 transformation. &s A= N M (X, A) all T,
are obviously one-to=one.

b) follows by a) and the transformation T: I — P* ‘,
T} : X —» PY¥(X) @& fined by T, (x) = {x} -

4,6, Lepma: Denote by & natural equivalences of fun:-
tors. We have: a) | o V, & Voo a s b) KooK, & Ky
e) Kye Vo & Vi, ye Ky

Proof is trivial.

A 1
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4.7. Legma: &) B, ,, & PPe Ky , ®) B < P%K,,
e) pe B, <@V, a)V,eP<c Py,

Progf: a) We shall prove R,, & P . K, - Let
g : X = (A, 2> bve amepping; define ¢’: X x A — 2
by ¢ (x,a)eg(x) (a). Let Ww:XxA->2 bea
mapping, define ¥ : X—> (A, 2> . by (F(x) (a) =
=y (x,a). Now, define T, : <X,<A,2%5 (X x A, 2>
by o (@)= 9, T/ : <X xA, 2> — (X,(A,25) vy
1;' ()= ¥ . We see easily that this defines transformations
T: Ragy—> B oK, and T': B+ Ky—>'FRa4, 25 such that
both T e T’ and T’ T are the identical transformations.
b) follows easily from a) and 4.3. Namely, we have B <
<P ¥ PTo K, -

<A, 2)
¢) Pirst, define 4, : X=X v B by 4 (x) =(x, 0).
We see easily that (f v id )eg =4 o f for any f: X Y.
Now, define T, : CA, X>v B—-<A,Xv B> as follows:

T, (0 m gy o 0 T (4, 1) = comst,
It is easy to prove that this defines a transformation
T.: Ve Q, — @, e}y  and that T, are one-to-one.

d) Define n: 2v2 —> 2 by fi(i,4 )= <, and, for

?

every @ € A, Za A2 by g,@)=1, g, &)=

for & £ @ . Define T;: <(X,2>vA><XVvA, 2> vy

T (9,0)= pelyg~veonst, ), T(a, V= ppolonst, v Za) -

Let f: X —» ¥ be a mapping; we have
P'c\a(uoTy(q,a)-<#v4dA,édz>(¢z.(gvcm¢t,)J.
..ﬂ,.(gvc,mo)-(fvéd,q)-ﬂo(q.fvco’»t,),
'T;(\/AoP'(#)(q, 0))-1;(904’,0)-{»»(9’,#“01»{),
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PV, (£)(T, (@, 1)) = P7o Vo (£)(nreCeoms? v o )=

=fle(eonst v gp)e (fvid )= froleonst viy,),
T (Vo Po(f) (@, 1) = T, (2,1) = o Ceonst, v Lo )

Evidently, every 7; is one~to-one. 7
4.8. lemgg: a) G, < P*e K, , b) K, < P*a\.
Eroof: a) define Ty : @, (X) — P K, (X) by Ty (¢)=

={(g@),a)la € A} . Every T, 1is one-to-one. If

f: X = Y, we have
(P*e KD)($)e T (@)= (PTe K)(f){(p(a)a)lae A=

={(feg@)a€A}=T, (fox) = T, (B, (f)(x)) .

b) Define Ty : K, (X)—= PV (X) vy T, (x,2) =
={(x,0),(a,1)].Every T, is one=to-one. If f: X — ¥ ,
we have

(Pte V} )(£) e T, (X, @ dm CPY 14 )(£)4(x, 00, Ca, 13 =

={C£(x),0), (@, i=T, ($(x),&)=T e K, (f)(x,a).

§ 5. e origatio

It 1s easy to prove
5.1.Lemmag: The set functors I, V,, K,, a,, B, P*

are nice.

5.2. Theoreg: For every composition G of functors [ ,
V, , Ky, @ , B, P* there is a natural number f and a

set M such that G < (P)*. v, .
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Proof: We shall use 3.7, 4.4 and 4.5 b) without further
mentioning.
. K, <Pt Vi by 4.8 1), 4.5 1) ;
Q< Pte K, < (PH)ts <PVl by 4.8 a)b),4.5 a) ;
R<PWeK,<(P)%Y, by 4.7 b), 4.8 bJ, 4.5 a) ;
Pte(P~)% Vy by 4.5 a) .
- IT, Let the statement hold for compositions of at mostm
functors; let G be a composition of m + 1 functors.
lience G = G'o H , where G’ < (P-yh, K‘ and H 1is zo0-
me of the functors Y, K,, @, , B, P* .
1) He : G P Y oV, & (P)% V, wiere M=Nv A
(by 4.6 a)) ;
2) He K, 1 G < (P VoK, < (PI*V, oK &
(P Ky o Vy< (POML Vo & (PO, Y,

where M= Nv A  (by 4.3 a),4.6 ¢}, 4.8 D), 4,5 a) and
4.6 a)).

DHeB,: G (P My, 0@, <P Qo Vy< (P Y,
where M = Av N (by 4.7 ¢), 4.8, 4.5 a) and 4.6 a)) ;

D H=BR:Gc (P VeBc(PeVyeP oK, <
<P ok, < (P, v, where M= NVA
(by 4,7 b)d) =nd 2) in this proof) ;

) H=P*: G< (PR, 0Pt (PI®e V[ o (P)2c (Pry*i, ),
(e 4.5 a) and 4.7 d)).

5.3. Constructive functors are drfined recursively as fol-
lows:

0y I, v,, K,, &,, A, P* are constructive func-
tor™,
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(21 F, G are constructive, Fo G, Fx G, Fv G,
{ F,G> are constructive whenever defined,

(3) If F is constructive and G & F , then G 1is
constructive.

Remark: Thus, constructive functors are "polynomials
produced from I, V, , K., G,, A, P*¥ under the o-
perations o, > , v, < > ".

Se4. Lemma: Let G be a set functor. Then G x G &
0,6, 6GvG=K, oG.

Progf: (G v GI(X)=G(X)v G(X)= G(X)x{03u
UG(X)x{1}= G(X)x2 = K, 0o G(X), (Gv G)(f)(c)=

e (G(£)(2)1) = (G (F)x éd,_)(z,t') «K,o GC£)(x),€).
By remerk 4.1, G, & @ . Ve have
(Gx GI(X)=a GXIXG(X)=(QeG)(X),(GxGI)(F)=G(f)x G‘(‘F):(Q'G)(f).‘

5.5. Lemma: The functors in three variables, F, , F
defined by

F(X,Y,Z)e <X, <25, FRfg, hde{f,<g, >,
(X, %Z)=(XxY,Z>, K (g, h)=(Ffxg, h)

are aaturally equivalent.

Proof: This is a well known fact; we see easily that for-
malae (T, (PN(X,4) =(p(xN(y), Cﬂ;"nz(v”(x N(y)ew(x,y)
define transformations T: FF — F, T': f; — F, which are
mutvally inverse.

5.6. Lemmg: Let G be & set functor. Then
{(G,PeGX>E RoQ, G .
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Proof: We shell use the following evident facta:
1) 1f G, & G, , them <G, G, > & (G, G, >, 2) Superpe~
-sitions of natﬂrally equivalent functors ave naturally equi-
valent. :
Thus, <G, P ¢G> & <G, KL - G>. Let F,, F, be
the functors from 5.5. For every X we have
{G,R*sG>(X)=<G(X), B(G(X)))>=<G(X)<G(X),
2% = F(G(X),G(X),2),
CRe@eGIX)=<B(G(X)),2)>=<LG(X)x G(X)2>=

=B (G(X),6(X),2).

Yor every mapping f: X = Y
{G,BeG)(f)u<G ), RIE(FfN>=n G (£),<G(F)<d, >)=
v R(G(F),G () <dy),

(Re@eG) ()R (G(f)x G(£))={G(fIx G(f),ud, )=

Thns, by 5.5, <G,ReG)> ® B +@+ G  and henoe
<G, P ¢G> RoB, G .

5.7. Theorem: For every constructive G there is = natu-

rel rumber & and @ set M such thet
G < Py, .

Broof: For 1, Vi, K., Q., A, P* the stste-
ment holds by 5.2. Let G < (P™)e V,, H<(P)™e Vp -
Then GeH< Fim- V,o B™e Vy < (P)™ iy by 5.2, Let G, H
be either both ccvariant or both contruvariant. Put £ =
emac(m,m), CaAu B.We see casily that
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G< (P V< (P VY, Ha (PI™ V< (p)t, v,
since [ m -m | has to be even.
Thus,
GxH< Py xPlay & qeploy <Pty ,
Kye B ¥

£ £ ~
GvH<e-‘4vFl’o\é-

by 5.4 and 5.2.
Let either G be covarient and H contravariant, or G
contraveriant and H ccvariant; again, let G< (P )™ |},
H< (P)"e Vg . Put Lamar(m,m-1),C= AU B. As
Im=(m-4)| has to be even, we have G < (P~)™e V|, <
<PV, Ha (PI™ Vy < (P ., .
Hence, by 5.6 and 5.2,
<G H> < <Py, PPy 5&ZBe g e PLY, <Py

5¢8¢ Using the statement of 5.7 and repeating the part of
ite proof econcerning the operetions we obtain easily

Theoveg: Lot Gy,..., G, be set functors, each of
them majorised by a constructive functor. Let G be & func-
tor obtained from Gy,..., G, o8 a polyno;lial in the
vperations o, x, v, < > . Then there is a natural num-
ber & end a set M such that

G < (PY™, Vv °

5.9+ Defipition: If G,,..., G, are set functors ma-
Jjorised by ccnstructive functors emd G is a functor, obtained
from G,,..., G, @8 a polynomial in the operations < ,
*, v, € >,we say that G is constructively majorisable.
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§ 6. Malorisation and realisations of gategories.

6.1, Theorem: Let F < G. Then SCF) S(&).

Proof: According to 1.2 it suffices to prove that

S(F) =3 S (G) whenever F 2 G

First, let. T : F = G be a monotransformation. Let
(X,4) be an object from SCF )., Put $(X,4)=(X,5 ) with
A = T (). We have to prove that f : X =Y 1is a morphism
from ( X,») into (Y, t) iff it is a morphism fram (X, 5)
into (¥, %) i.e. that

F(£)(s)c t 1iff G(f)(B)c £ for covariantF,G,
(1)

F(#)(¢)c » iff G(f)(E) c B for contravariant
F, G.
let F, G be covariant. Let F(#)(A)c £. If a € 5 ,
we have a = T (&) for some & € A . Hence, G (f)(a)=
“GUENT(EN=T (F(#)bNeZ as F(f)(b) € £ . Thus,

GUIAB)c £ . Now, 1let G(#)(AB)c £. 1t a e 5, we
have Ty (@) € & and hence G (f)(T; (a)) € £ ; thus,
T (F#)(a))=GUH#)NT (aN=T, (&) with b e £. 4s T,
is one-to-one, F(f)(a) = & € £ . The proof for contrava-
riant F, G is quite analogous.

Now, let T : & —» F be an epitransformation. Let(X,s)
"be an object from S (F). Put $(X,4) = (X, X ) with
A = 1}'4(0) . Again, we have to prove the validity of the for-
mulae (1). Let F, G be covariant. Let F(f)(A)c £, If
a &€ 5 ,we have T, (a)e 4 and hence T, (G () (a)) =
sFUENTy @ e £, Leee G(F)(ade T () Z . Let
G@I(%) ¢ f,aenhs Ty 1is onto, @ = T, (&) for some
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& € G(X). i'e have &~ € & and hence F(f)(a.) -
=FUXT, (b N=T,(GH#)(&))e £ , since G(f)(b)et= )
Analogously, for contravariant F, G .

6.2, Lepma: Let Fy,..., F, be covariant set func-
tors, A,,..., 4., types, A¢-{oc,f I A< %7, Then
therecexist sets A; ,B;, (4 = 4,..., m ) such that

SR, 8, (R, 8,0 S (K, -a Fyers Koo Gy * £

WemayputA =7, 5-“' /’“ﬁ’A .

Proof: For every couple ( £,/3) (where B < 7" ) choo~
se a mapping 'ﬂ';; of ot onto ac;- We ghall consider o¢ = )
nary relations on £ as subsets of <o, Z ) .

Let (X, A R", 1=1,...,m3) be an object from
SUCE, Ay (B,AL), RPai{nd IB < 7%} . Define Ric
cKyie By o F (X)=(elh £ (X)>x 3" by

(9,) € R®  1ff there 15 a ¥ e Ky with o=

=Y o »ﬂ.,; .

Since evidently R? , E; are distinct whenever RY, R
are distinet, it suffices to show that for any mapping f: X -
— Y and objects (X, {R*}), (Y, {8%}) frmS((F,4)
vy (B, A, ) the following two statements are equivalent:

(1) for every <, F, (f) 18 R* S% -compatible,

(2) for every 4, (K;* G, F (£ (R e 3+ .

Let (1) hold. Let (gp, B)e R*. T™us ¢ = yeon; with

v e /L/:‘ .ByQ), F, (fley e A,:‘ and hence

K i a ‘F'('H(q,ﬂ)aff‘-(ﬁ)o‘ty f»ﬁ,ﬂ)e 5.

Let (2) hold, 1,(/ € /c . We have to prove that F(ﬁ)o‘yf‘é .
Since (1;/ 11«,,, A)e R‘, we have (F; (fley e ft,;/-”'
= (K ;0 Q  F)FI(Y ey, A)€ 85, Thus, F (£ ¥ opie

i
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= e pj, with Yy € .la: . As .fl-;; is a mapping onto,
we have F; (#) ey = J € 4; . The proof is finished.

6.3. Legmg: If F, ,..., F, are covariant set
functors, then !

S (Fpyy Fad) 3 SCYV F .

Proof: Let (X, A ,...5 A, ) bz na objeet from
SCF,.., B).Put &=, s x(ie VF (XY, 1
{5, 3 % {5, 3 , tihen evidently A = 5. Hence, it
suffices o prove that f : X ~> ¥ 1is a rorphism from
(X,{»,3) into ( ¥, { #; 3 ) 4ff it is a morphisxn rrom
(X,»)into (Y, £), I F (f)(h;)c £ for every

i and (@, 4)€ A, we have
CVEN#)(a,4) = (I arjlet; xGlc X .

It (VE)X#)(A)ec t ed a €4 ,then(a,<)e » and
hence (F; (f)(a),i)e X so that (F; (f)(a),i}e £ > (1).
Thus, F, ($)(a) e ti

hd

6.4._Remarks: 1) Of course, in 6.2 and €.,3 it suffices
to assume F; either all covariermt or all copntravariant.

2) The realisation in 6.3 is an isofunctor.

6.5. Theorent Let G,,..., G, be constructively
majorisable functors, A, ,..., A, types. Then tiere
is a natural number R and a set M such thet

SUG , 8,0, (G, B, Nz SUP ¥, ).

Broof: By Theorem 1.5, 6.2 and 6.3 we obtain
$(G,,8,),...,(G , 8N = SUAFR,AYD,...,(R.,4, 0=

=3 S Ky By FyeesKy o a,‘.ngsc‘_g Ke,* Gp* 5 )



As G; are constructively majorisable, VKA“ a", o F: is
constructively majorisable. By 5.8 there are & and M with
VKM o a‘i * < (py*. V,, - Thus, by 6.1,
SV K, + G F)=p SUPI™ V) .

6.6. Coprolliary: Let G,,..., &G, be construe-
tively majorisable functors, 4,,..., 4,  types. Let
R be fully embedded into S(( G, d,),..., (G, , 2, ) -
Then, in any set theory satisfying (M) (see footnote at 4.2),
® 1is boundable.

Proof: This follows irmediately by 6.5 and [ 2], as
(Pr™, V, is e selective functor. (See 4.2.)

j

§ 7. Some remarks.

7.1. By 4.3 and 6.1 S(K, )3 S(K,), S(R,)=3 S5(d,),
S(R)=$ S(R) whenever card A & card B . On the cther
hand there holds

Theorem: The condition carol A € card B  is peges-
sary for any of the following: a) S(K,) =% S(K,) ,

p) Si(G,) =% Sc@,) o) 5(RYF S(R).

H
Propf: a) Let caxel A > eard B ., Take & set X
such that caxrd X = ¢aeol A and a one-to-one mapping ¢
of X onto A, Consider the object (X, #) with 4 =
(X, g (x)ixeX}.1t £: (X, )= (X, 5) is a rworph-
ismy, K, (#)(») ¢ 4 , and hence, Tor any x € X, (f(x),
@(x))€e ». Since ¢ 1is one-to-one, we obtein f(x) = X .
Thus, there 1s no non-identical morp{xiam of (X,n) into
itsclf. Let £ < 'K, (X) be such that the only morphism of
(X, £) into itself is the identity. Thua, if we define
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/s
ﬁwz X— X (x +ay) by ﬂ,,yt.xhryr, ﬂ,,(ﬂ = Z
for x # x , there 18 (w, &) e & such that(f,,(u),,&)#
¢-%1 . By the lest formula necessarily 4 = X ., Find some
4 with this property and denote it by ¢ (x). For X + 4
we obtsin (4, (X)) = (fy, (X),g(x))¢ £ , while
(4,a9Cy)€ X . Thue, g+ X - B is a one-to-one mepping.
This is & contradiction, since card B < card X .

b),c) Denote by CCX) +the semigroup ccnsisting of
the identity mapping of X and of all the mappings of X
into itself which are pot opnto. We shall prove that, for any
semigroup S of morphisms of X into itself containing the
identity mapping, if card A = card X , there are s< @, (X),
A c B (X) such that

J={21Q, ) (AIcAI={FIR(F)(£)c 2} -
On the other hand, if card A < eaxrd X , there are no
A, X with

CCX) = {FI1G, (£)(MIcnd, CX)={fIR(F)NE)c ).

First, let caxcd A = caed X ; take a one-to-one mapping
g of A onto X . Put pefnoy la e}, t=fgoxl
leed}. 12 Q) (A) e » (REFNE)cE ) then,
in particular, f e 4d e g € » (g loidefe ), hence,
foeg=ep, xe S (cf'-{-'c 9"-:&,«.5.‘!). As @ 1is one-
to-one mapping onto, f = x € ¥. If £ & ¥, then, for ay
ceS,fokege n,gecxsfe t, Now, let

card A <caxd X . Let A ( £ resp.) be such that £ (X) =
c{FfIQ () (A)a A} (C(X)={fIR (#)(L)c £}

resp.). As 0 e cand A < card X, cord X » 2 . Thus,

there is a non-identical one-to-one mapping g of X onto
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iself; hence there is an o : A — X, o € 5, sue:
that g o« ¢ . By the assumption, X \ o (A)# & . Chonze
an X, € XN a (A) and X, # X, and define £: X = X
by F(X,) =g (x,),f(x) = g (x) otherwise. Now,
fe C(X), while fexX =geco ¢ A, This is a3 conira-
diction.

‘Let the £ - exist.; there is @ @: X— A, R e £ such
that A2 g ¢ Z . By the assumption, B is not ons-to-
one. Choose X, , X, , X, % X, such that B(X,)=/B(X))
and define ¥ (9‘1()(:, ) =X, , f(x) = g(x) otherwise.
We have B of = Beg ¢ £ ed f is not onto, which is a
contradiction. The proof is finished.

Te2. The following statement concerning the, in sone
sense dually defined, aA and E, may be of some interest:

Theorem: I. If card A 2 2, S(F ) is realisable in
no S(G,) .

II. On the other hand, however, for every A there is
a B such that S(8,) =3 S(R).

Proof: I. By 4.3 and 6.1 it suffices to prove that
S(F)Y=35(6,) for no B.

For any set X with eatd X > 2 choose an x, € X
and put

p(X) =5t X = 210X, )= 1) = (Ix # X,, §XI= 1)} ;
thus, 4 (X) € B (X). An important property of & (X)
is the following one: If B £ X and f': B — X is any
mapping, then there is a morphism f : (X, A) — (X, 5 ) with
1B = £, Really, if B = X\ (x,), choose a 4 € B8
and put £(X,) = £'(&,). If e » and g o f(x,)=1,we

have ¢ o f (&)= 1; thus, ge f € 4. If there is
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Xy € XNBy X, 4 x,, put #(x) = #7(X,) for x ¢ B
(4f X, ¢ B  gefine first arbitrarily f (x,) ). If

@ €A and 9o f(X,)=1 we have ¢ (f(x,)) =1
and hence 9’043.5 Ao
Now, let S (R ) 2 S(Qi). Choose an X with card X >
>card B . Let x c @, (X) replace 4 (X) . Choose an
£: X = X which is not a morphiem (e.g., choose X, e X,
5(1* X, and put f(x) =X, for XX, FIX) = X, )
Hence, there is an o : B — X, o« € £, such that
foo ¢ #. We have o (B) + X and hence there is a morph-
ism ¢ with g | (B)= £l (B).Then g o ¢ = foox & 2.
This is a contradiction.

II. If € 1is an equivalence relation on A denote by A,
the set A/e of all the equivalence classes. If a € A, de-
note by @ (€) the element of A, containing a . Hence,
(a,£)ee iff a (&)= L Ce).Denote by E the set
of the all equivalence feletiona on A and put
: B=(0)o (U{A, < (e)lee€EI.

If ¢ : A— C is any mapping, denote by € (& ) the e-
quivalence relation defined by: (@, & Je e(g) ire g(@)=
= @ (&) . Evidently e(y) c € (#+ ) vhenever ¥ o &
is defined.

Now, let (X, ) be an object of S (d, ) . We define
A c R (X)) by

veA Iff VYg: A=+ X(3eoe(y)Vac
eA yog(als(a(e),<Vmb P é »)_ JWe shall prove that,
for $: XY, xc @, (X)), »cB,(Y),

G (f)(n) c » e B (£)(B)c k.
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First, let O, (f)(r)= A , Y € % . Let, for some

g :A->X, there be an € > € () such that for every
oe A Y ofof(al=(ale)e)ie have € D€ (fo &),
gince if § . g (@) =foegp(&), then (a(e),e)=yeofe
o@(alde yofoqp (&)=(b(e),€),hence a(e)=-L(e) 80 that
(@, &)ee. As YWe 5, fogé » and hence g ¢ x.
Thus, for every Y € 5, Yyef € X .

Now, let R, (#)(A)>c R . If Gy (£)(n) ¢ A, the=
reisa gexr wWith fe g ¢ A. Define ¥ : Y— B as
follows:

¥ (y)=(acle(fey)),efoqp)) whenever 4 = fog(a),

y(y)=20 otherwise.

(This is correct: if 4 = fog (@)= fogp (&), @,&)6€(foep) and
hence a (€ (feg))m b (e (fegp N .) Let « ;A=Y be such
that there is an € > 2 () with y(mu(ad=@(e),¢)
for every a € A. If a € A, w(@)e feop (AR) by
the definition, since otherwise Y (& (@) = 0. Thus,

@ (@)= focp(&) for some & € A. We have (a(e), €)=

=y (@ @N=y (Fog (& N=(@(e(fog)e(foglio that e= € (fo cp)
and a(e) = &(€), 1.e. fr P (&)= Ffop(a) -

Thus, ¢t (a) = fep(a), We obtained ec=Ff+ ¢ A and
consequently o € 5 . Hence, % o f € X . On the other
hand, (¢ e fle g (@)= y(feg@)) =(ale), &) where €=
se(f e ¥)>e ()80 that ¥ ¢ £ . This is a contradiction.

T.3. The realisation of S (&,) in S(B) 1in the
last theorem is not caused by majorisation; 4, is covari-
ant and R contravariant. Of course, combining 1.5 and 6.2
we obtain realisations of S(F) in §(G) with different-

ly variant F, G ; that last one, however was of another
-8l =



character. Here is a further statement of this type:
Theorem: S(P7) =3 S(P*, {23%.
Proof: Let x « P"(X). Define a binary relation &
on P*(X) as follows

(A,B) e £ irf for every Ue n AclU implieanU#ﬁ.
Let £ c P(X), »c P7(Y), f: X—= ¥, Let

P=($)(sYcn, (A,BYe & . Ir £(A)c V  with Ve 4,
ve have A € £7(V)€ a4 so that there exists a & €
e RAF (V). T, f(b)ef(B)nV and hence(f(A),
f$(B)) € 5. Let P+*(+) be # 5 -compatible, Ve 4. If
£71CV) € £, we nave (F7UV) XN EUV)=(F71CV), (V)€ K
Thus, (#€°°CV),$+FY\V))e & ., Since ff (V) e V
we have fECYNVNAV £ 0, as (Y V) Y\ V
we cbtained a contradiction.

Corrollary: S(P™) = SWP*?) .

Proof: By the previous theorez and 6.2, S(P7) =¥
=3 S (Qz o P*), As az < (P*)? (define T: B,— (P*)? by
‘[;((x’y,))._.{{x;,{x,ry}} ), we obtain the statement.

This last statement gives rise to a question, whether in
Theorem 6.5 the functor P~ may be replaced by P* ., This
question seems to be open.
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