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Commentationes Mathematicae Universitatis Carolina* 

8,1 (1967) 

ON AN EXTREMAL PROBLEM CONCERNING GRAPHS 

Jaroslav BLA2.EK, Milan KOMANfPraiha 

(Preliminary communication) 

In this paper9 a generalization of a problem proposed 

by P. Erdos (see e.g. [1, p.87J) and of a problem proposed 

by P. Turan (see e.g. [2]) is studied. This generalization 

may be formulated as follows (see also [3]): Let G* be a 

finite graph without loops and multiple edges, the comple­

mentary graph of which consists of Jv components (of connec-

ticity), each having the form of a complete graph 4 /n^ > , 

<i s 4, 2.j ...) Jv. The problem is to find the minimal number 
x) of intersection points of edges for all immersions of Or 

into the Euclidean plane E^ . This number will be denoted 

by jv^ (m>„ *%,..., m^) . 

1. Upper estimate of *fi^ C^, /H^ ? - • •, srVjk, ) • 

a) In a particular case (the problem of P . Erdos), for 

/ttf «• nv% m... m /ri^ m 1 9 the following upper bound has 

been proved (see £4] and £3J): 

(l) i±(1,4,...,4) £ L[£n*£lji^jL*zlj . 

b) In another particular case (the problem of P.Tu-

£̂ s2ji-.£21t- /fe*-2, K. Zarankiewicz proved in his paper £2J 
x) The term "immersion" is used in the same sense as in 

tlJ. 
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c) For <*' m 3 ? by using a generalization of Zannkie-

wiez's construction from [ 2 ] , i t can be proved that 

f^to-M'rtfc,^) 6 K(<ni9<n,jL+m,t)+ K(m*,^1+'n,t) + K('n99'qf+4ii)-

- K(mi9<nz) -K(<n v <n 3 ) - K(rn,17<n3), 

where K(a9&') i s the symbol defined in (2) . 

d) In general, for Je, & 4* we may suppose that in the 

sequence 'ft* * ̂ ^ > * *'' '*->£, a l l odd integers are preceded 

by a l l even integers. We shal l use the following notations: 

m S L ~ F ^ > 4Zk ~ I x J (for any i n t e g e r s ); 

A * «kii K~ ^ ; ^ - 2̂ 3 > -^ - ^ , •'• ; 

^ ^ 

Then it is possible, by using a generalization of the con­

struction B from f3Ji to prove this upper estimate: 
Jk, A 

i±C<nv *„...,**) ilK^.,^)-,XK(«i i tm.) + 
• < ^ 

where 

Lбn .,,^,. . .,^)- X (<*ь%<ъaйl,
+<*нaь4iJrљ + 

i*ţЛfZft4ФШ f 

*<*<t<*C 
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and where £ » 1 if in the number of odd integers in the 

sequence m^7 /tV2 ,*.., iv^ is odd, and & * 0 otherwise^ 

M(at-?^i ) is a function of degree 2 in af,..va^,^,...,,<0^< 

2. Lcvter estimate of "fx̂ , Oz^, nvx,.. . ̂  / ^ ) , It seems 

to us that all upper bounds mentioned in part 1 do not dif­

fer es9entially from the number ji*^ C^ri1, /rv±, . -. - /rt̂  ) -

But the eatabliahment of a precise enough lower bound seems 

to be rather difficult. 

In case /n,̂  m /n^ * -*** -» vrt̂  * "/ is proved in £4J 

and [3] 

(3) **fhi>-<(1>4>-> *> 6 (^-lt)flk,(1J
/l,-,/t) 

For A - ;2, in C23 the proof of the inequality 

(4) K U f , ^ ) i ̂  f^, /n̂  ) 

i s not correct because of an incorrect app l ication of Lemma 

2 (see [ 2 j , p . l 3 9 ) . We do not know ( i f mvon('ili7<ri1) & 5 ) 

any proof of (4) . Y/e can only prove the following inequality 

analogous to (3): 

(5) ^^(^-1,^) £ (*ii-2)fo(<n.f,'n>1). 

In general, we can prove 
A, 

t» 1 

g (ni + /% + ..' + /nk~t)4ih(m>„^ 

which is a generalization of (3) and (5). 
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