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THE CONCEPT OF RANK AND SOME RELATED QUESTIMNS IN THE
THEORY OF MODULES
Vlastimil DLAB, Canberra
(Preliminary communication)

The present results extend the ideas of [1l]; their ap~
plications show some new aspects of the theory of modules;
in particular, they generalize some results of A.W.GOLﬁIE
[2) and EBEN MATLIS [3]. The results were partly read at

the IMC in Moscow, August 16-26, 1966.

Let R be an (associative) ring with an identity. De-
note by & the family of all its proper (i.e. # R ) left
ideals, by U & &  the subfamily of all irreducible
ideals. For L e ¥ and P € R , the symbol L:p stands
for the (left) ideal consisting of all f € R  such that
1€ L .

Let M be a (unitary left) R -module; put M, = M\{0j.
The order of X € M is denot‘ed by 0(x); hence 0(x)e€
€ £ if and only if x € M, .

Evidently, 0(px) = O(x): p for any € R and X €M,.

We refer to [1] for the definitions and some basic facts
concerning dependence over modules.

1. Let T be an index set. For t € T, let ?j: <
€ ¥ bea subfamily satisfying



L_ef}f/\goeR\L*)LfPeg{’ :

Then, define .7’;' c ¥ by 4
Le B — Vp (peR\L-—rL-.;o#.f).
Evidently, o
1 €
Le B Ape RNL — L:p e

€

and

?’n.’f’aﬂ'

+ t

Put -1

RN

Now, consider the set 2" of all functions of the in-
dex set T into {~1, 1} and, for each # € 27
the subaet :Mf of an R -module M by

£¢¢)
X € M4 L d OCX)C‘/PT ?‘;

, define

Clearly, Nu (s M,) have the following two simple proper-
ties:
(1) xeM, A P ¢ 0(x)> px €M, ;
(11) #+ ' > M A M, = 4.
Hence,
(111) x € M, A pxe M, — = £ .
Also
(1v) xe U M, e 0(x)e A

teT

The following two lemmas are of fundamental importance:
Lomma 1. Let 77¢ s;&j[r M, be a maximal independent
subset of M . Then, for any ¢ € 27 ,

is a maximal independent subset of M PR
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Lemma 2. Let %, (fe 27) be an independert subset

of M¢ . Then,

" =4‘L)2T' m*
is an independent subset of M . Moreover, if %%, are ma-
ximal in M, and if a subfamily .‘,-2 e ¥  exists such

that

A

Le ¥ »3p(@@eR\NLAL:0eX)

and
M52 €  for every infinite T’s T,
then 20 4is maximal in M.
In particular, %7 is a maximal independent st;baet of
M provided -
(1) for ny T’ € T there is a finite T*c T’ such

that
4 4
HAPRGAF NS T AP
(11) T 1is finite.

2. Some applications. (a) Let T=4{13, 75’1 e J .
Then, @,'4
cible ideals. Denote the corresponding subsets of M by M.,

and M_, .

consists of what will be called strongly redu=-

There exist maximal independent subsets 2% of M such
that %1 € M, U M_, and any such % 1is a disjoint
union of a maximal independent subset m,, of M1 and a
maximal independent subset m_ 1 of M ¢ » The cardinality
card (70, ) is an invariant of M . On the other hand, any
element of 777_, can be replaced by two elements of M_, so

that the resulting subset is again independent.
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Define
%0 (M) w card (9at,), *1 (M) = v card (771,)
and . -1
(M) = *n (M) + *r (M)
and call *4 (M) the irreducible rank, *xZ (M) the re-
ducible rank and A (M) the gomplete rank of the module M.

An R-module M 1is said to be tigy if *x (M) = 0.
XpM)=0 (1.e. M, = # ) for any R -module M , if
and only if R has the property (J) of 1 . Thus, the pro-
perty (J ) of a ring R expresses the fact that every R =
module is tidy. Since any (left) noetherian ring has (J)
(cf.[1]), the above definition of 4 (M) extends the defini-
tion of rank of Goldie [2] to arbitrary R -modules.

(b) Let T=4{1,23% , ?:a- J and \7;’ be the
subfamily of all (proper) maxi ideals in R . Here an ideal
L € R 1is said to be paxi in R if, for every p€ R\ L,
there exists ¢ € RN (L:p) such that L : 6p 1is es~
sential in R . The ideals of .’Pz_" will be called mipi
(in R ).

The particular value of the concept of a maxi ideal rests
‘on the fact that it allows to extend the definition of torsion
and torsion-free R =-modules to the general case: An R -mo-
dule M 1s said to be torsion if the order of .each of its
elements is maxi., The set of all elements of maxi orders of
an arbitrary R -module M 1is an R -submodule, =~ the tor-
sion R =submodule TM of M., M 1is said to be torsion~
free if T, = {0} . '

The quotient R =-module M/ TM is torsion-free for every

R =module M .
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Denote by M the subsets of M  corres-

$01), £(2)
pondin:: to the intersections

£(1) +(2)
.Z;’ N 92’ .
Here, M, U M,,_1 = M, of (a). There exist maximal
independent subsets 27¢ of M such that ¥t & UMm) s
’

and any such %7 is a disjoint union of maximal: indepen-
dent subsets m,(,,’m, of M“,,,,”z, .
‘Again,

caxd, (M, ,) = tu (M)

and .

caxd (m1’_1)= #M (M)

are invariants of M and are called the irreducible tor—
siop rank and irreducible torsion-free rank of M , res~
pectively. Thus,

My = Ea (M) + P M),

itﬂ(M) - it,t(-,;d) ,

()= 0
and

Hpemy = T M, .
In fact, the latter relation is a particular case of the
following formula

(M) = T (N)+HaMN) _
which holds for any R -submodule N of M . These re-
sults extend again those of [ 2],

'(c) Let A~ be the equivalence defined on the sub-

family J as follows:
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Ly~ LzH Ly:p = L,_’P; # R for certain £, £ € R.
Denote the corresponding partition of J by 1 ¢
Medmbier -
TT is a refinement of { ?: N ?:, ?;10 ?;"; of (b) and,
thus, we can write
T=Am 3y o1 v im Yoa s

? 1 U o=
where T= 1; (9] T;’ "L.J’; m" = ?; Fa) f; andtaf'li t‘_
= ?;1 N -?;-‘ .
Put f; - 7 for t € T, Then, besides
. ‘ .
*L‘JT ﬂ: = ?; of (a), also

N 2"e P77 ot (a)

teT

Hence, any maximal independent subset ¢ of an
R -module M such that @t s M, v M_,’ (which exists
by (a)) is a disjoint union '
ot 'ttej*r ’J?‘Lt v m1 ’
where mt is a maximal independent subset of the set M-t
of all elements of M of orderes belonging to 7, (t € T)
and m,., to a maxiral independent subset of M_, of (a),
Again, for t € T,
caxd cm¢> = %IL(M)

is an invariant of M and will be called the irf ~rapk of
M.
Thus,

n L A

lf D’ t
M) =T TR(M) ana M) Z. thoM) .

teT, €Ty
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In particular, if 42 (M) = 4 ,then the orderes of all non-
zero elements of M belong to the same family 7, for m
certain t € T .

Let us remark that in the case when R 1is a commutati-
ve noetherian ring, there is Jjust one prime ideal g in
every JT,Z and we can call, in accordance w’i'.th the termi-
nology of abelian groups, the cardinality tx (M) the
Et -rank of the R =-module M .

(d) The latter results can be used to generalize some
of the results on injective hulls of R -~modules of Maltlia
L3l

nt -{.)(i }iel is a maximal independent subset of an R =
module M if and only if the direct sum ‘,‘éﬁxRx;_ is essen-
tial in M . Thus, if an R -submodule N "is essential in

M , then 9¢ & N 1is a maximal independent subset of N
if and only if it is a maximal independent subset of M .
Since M 1s essential in its injective hull H (M) , we
get immediately
*r (M) = *x (H(M)) ,

where X can be replaced by any of the symbols from
{i, 0,4t if, T § - ‘

Let H be an injective R =-module. Then, the elementa-
ry properties of dependence yield immediately the eqpivalen—
" ce of the following statements (cf.[31):
(1) H 4s indecomposable.
(11) w(H) = 1.
(111) Por any 0 ¢ X € H,0(x)€ J and H =

= H(Rx) & H(R/0(x) .
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(1) H¥ HR/L) for Le 7.
Also, for L,, L, e T,
HeR/L, )y = H(R/L
if and only if L1 and Lz belong to the same equivalen-
ce class ar of (e). ‘
Denote the indecomposable injective R -module corresponding
to 7 by H((m).

Let %% = {X;},,; be an independent subset of M
such that 0(x;V€ J (Pie€l); lesHIM)2 M be
an injective hull of M . Let H(R X;) be an injective
_ hull of RX; 4in H(M) for 7 € I. Then

< HRX) > = @ H(Rx;) -

Summarizing, we can formulate

Theorem. There is a one-to-one correspondence between
the equivalence classes Jr € TFR . and the indecomposable
injective R =-modules H (or) . This correspondence amounts
in the case of commutative noetherian rings R to a one-
to-one correspondence between the prime ideals P € R
and the indecomposable injective R -modules H (P) (cf.
(3.

If M is an R -module and H(M) its injective hull,

then H(M) contains a direct sum

(k) @ H, ()  with card (I )= Tr (HM)=Th(M);

TETy
Coiel,

on the other hand, any maximal direct sum of indecomposable
injective R -modules contained in H(M) has the form
(X). In particular, any two direct decompositions of an
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R=-module into direct sums of indecomposable injective
R -modules are isomorphic and can be described by a cardi-
nal-valued function on T (cf.(31).

Furthermore, if M is tidy (see (a)), then (%) is
essential in H(M) and thus, H(M) is, up to an iso-
morphism, uniquely determined by the function f :

$ ()= T (M)
defined on T, . Again, this latter statement amounts
in the case of (commutative) noetherian rings R to the,
up to an isomorphism, unique decomposition of an injecti- '
ve R -module M into the direct sum of indecomposable in=-
Jjective R -submodules described by a cardinal-valued func-
tion on the family  ﬂk (the family of prime ideals of
R ) which is well-defined by any essential submodule
of M.
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