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ON EXTREMA OF FUNCTEONALS
Jind#ich NEEAS, Zita PORACKL, Praha

Introduction. The present paper is dealing with study of
extrema of functionals. One simple generalization of Vajn-
berg's result on existence of minimum of non-linear functio-
nal f 1is given and the condition for uniqueness of minimum
is established. These conditions concern the second diffe-
rential of f « Another theorem, where the sufficient con-
ditions (concerning gradient of the functional in question)
for existence and uniqueness of extremum of ¥ are given,
is presented. Furthermore, several simple conditions for
weak convergence of minimizing sequence are given and strong
convergence is investigated, too.

Assuming existence of a unique minimum of the functional in
question, a simple condition concerning the second differen=-
tial - of ¥ 1is sufficient for the strong convergence of mini-
mizing sequence. Given a sequence V;, (X) =& (x)-£, (X)
of functionals, where ¢ is non-linear, 4, are linear
(we are working in reflexive Banach spaces) and letting

¥, (%) = m ¥, (X)  (this minimum existing),
(m=0,1,2,...) the implication 4, — £, = x, = X,
holds under certain conditions. ’

Terminology and notations used in this paper. Real Ba-
nach space is denoted by E (or E, , E,,}_ etc.) - E* is
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the space of all linear and bounded functionals on E 3 the
symbol [E“ - E,#J denotea the set of all linear and boun~
ded mappings of E, to E"l— .

Let F be an operator from E, to E,y_. We shall denote by
DF(x, £ ) 1linear Gateaux’ differential of operator F
in the point X , i.e.

DFCx,h)-rfﬁ F(x*‘t’;)-F[ ’ he E"x , Where

DF(x,# ) is bounded and linear in variable v, If f is
a functional on E having a linear Gateaux’ differential

on the get M ¢ E | then
(1) Df(x, )= F(x)h ,

where F(x)e LE — E; 1 | X being fixed, xe€ M.
The operator F defined by the equation (1) is called gra-
dient of the functional € and we shall write
F(x)=grad f(x) .
Operator F defined on E to E* is called poten—
tial on.the set Mc E y if there is such a functional f
that the equality
grad f(x)= F(x)
holds for all X € M.

Remnrk 1. If the operator F defined on E to E¥* is
potential ‘'on M c E , then there exists only one functional
+ , for which £ (X,) = £, ( X, being a fixed point
in M) anc' F(x) = grad £(x) on M4 the functional £

is expressed by:
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1
(2) f(x)= ﬁ+°jF(x.+t(x-x,» (X -X,)dt

under certain conditions (see [1]),§ 5) which are fulfilled

whenever this relation is used. Weak convergence is denoted

by o

Remark 2 ([2], § 3). Benach space has a weakly com-
pact sphere if and only if it is reflexive.

Lemma 1 ([1],8 9). Given a Banach space E with a
weakly compact sphere and given a bounded weakly closed set

6ckE and a lower-semicontinuous functional on E ,

then ¥ is bounded from below on 6 and there exists

min F(x).
xeb

Lemma 2. Let E be a Banach space with a weakly com-

pact sphere; let f be lower-semicontinuous functional on

E y X, € E and suppose that there is a K > 0 such
that r > K implies

'::r‘»fﬂ f(x) 2 £(X,) .

Then there exists an absolute minimum of f(X), i.e.

min £(X) .
xek

Proof. Let n = max(K, ix, 0)s D,={xsIxl&r} .
There exists mim £ (x)
%€ Dp
trivial to show that

according to Lemma 1, Now it is

mim £(x) = mim F(X).
xet e Dp,

Definition. A point X, 1s a critical point of the
functional f if ’

grad £(xX,)=0, (I6l=0).
Theorem 1. Let E be a Banach space with a weakly
compact sphere. Assume that: 1) The functional { has
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Gateaux  differential of the first and the second orders on
E and the inequality

) Df(x, h,h) > ¥ Ul lal

holds for all A ek , Where ¥ (t) is a continuous, real-

valued function on <0, + @) , non-negative such that

y 4 & = o
(4) Lm kS rwat = o
2) D (tx, b, h) is continuous for te <0,1> -

Then there exists mipv £(x) . Furthermore, if
Y(t)> 0 for t > 0, then there exists only one
extremal point.

) Proof. The first assumption implies the lower-semi-
contim;ity of functional f in any sphere in E . Accord-
ing to Lemmas 1 and 2 it is sufficient to show that there
exists a number R, > 0 such that for R > R, the

inequality
nt £(x) 2 £(x,)
Ixi=R
holds ( X, 1is a point in the sphere { Xs I x 1/l € R, % ),

Let F(x) = grad £ (X ). Then, according to (2), we
can write

1
F(x)h = F(8)h + [ DF(tx,x)hdt ;
o

particularly, for A = X  we have
F(x)x = F(8)x +/"DF(tx, x)xdt > FOx+1x1-7(1x ).
[J

'Comequéntly, the relation g
' 1
$(x) = £00)+ [ FCtx)bx G

implies the estimate
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L4

41
#x) > 4O)+, [ TF @ xr 1t XN FNEx1] T =
- £(0)+ F(8)x + R- [Ty (tR) at '
: 4
on the sphere | X f=R , orf(x)af(8)+ R-(—ﬂF(G)l-:fr(tR)dt).

4 R
But [y (tR)dt = %‘/ T (t)dt , so that for a given
L)
K > 0 there exists a number R, such that for R > R,
the inequality 4 (x) » f(6) + K  holds on the sphere
- y - 4
Ixl=R, i.e ,mﬁ -f’(.xl) £(8)
The second part of theorem is trivial. If both X4 and X,

are critical points and X - X, ¢ 0 , We have
0 2Df(xy, h)-Df(x,, )= p‘#(x,wz(x,-x,),l»,x,—x,)

_ for all A € E ; especially for h =X, - X, we have a
contradiction.

Remark 3 ([1), § 9). If X, is an extremal point of ¥

on the open set & ¢ E  and there exists Df(x,, ),

then the point X, is critical.

Theorem 2. let E be a Banach space with the weakly
compact sphere; F potential operator on E to E*; X, €
e E and let F(x, +t(x-%,)) (x -x,) be continuoul.
for t€<0,1) . Assume that there exists a measurable func~
tion A, (#4), defined on < 0,®) such that
a) 3-!"—'5[—") is bounded on any finite intervalj

R, 2 »)
b) there exists R, such that ,o/' '—‘x-',sﬁ—— as > 0;

4

e) F(X)(x-x,) >.lx‘ (hx -%x,1);

4) X~y X mp F(X)(X-%,) & Lm F(x,)(x, -X,) .
Let us degignate by f (X) the functional for which
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F(x)=qrad f(x).

I Then there exists a local minimum of the functional f
and accordingly a critical point.
ITI Furthermore, if

R
e) /S —&,‘,—(Pldb>0 for R # R, then there exists an
[
absolute minimum of ¥ .
R
III Furthermore, if [ iﬁzci’.¢4>o foo R >0,
°

then the absolute minimum is unique.

IV If, for arbitrary points x,, X, € £ ; X, # X,
(F(x,)- F(%,)) (X, =X ) >0 then f has at most one
critical point. 4

Proof. We shall prove that f is weakly lower-semicon-
tinuous on E . The first assertion then follows from Lemma

1 and the fact that f(x)>f(X,) for xs Ix-X,ll=R.

(According to Lemma 1 there exists ,mumn f(x) and as

Ix=-X i8R
@ result of the relation f(x) >#(X,) on Hx -Xol =R
there exists a critical point.)
~ w ~
Let X,, X € E; X, —> X . The inequality

Aty (X=X, )

b lx ol 1x %l

F(X,+t(x-xX, ))(.x-.x.) 3

holds on the assumption (¢) (+t 4s positive)., Because of
boundedness of lx, — X, I (I x, ~X, 1 1s bounded
owing to weak convergence of { X, } ) we have sccording
to (a)

(5) FCX, + (XX, W(Xom X615 - M3 M >0, £ <0, s m = 1, 2,0
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Now,

1
fl4-'[.x,+t(5<"-x,»(§-x,)dt (“:ffée& Flx,+t (X=X, ) (x,-% )dt &
(63)°
{ P &Zr_r_yf1F(x,+t (%, =% ) (X, - x,)dt

where the last inequality follows from Fatou’s lemma which
can be used according to (5). Now, using the relstion
f(x) = 4’(.x,)+/4F(x,+t(x -X, N (X -X,)dt
and applying the inequality (6), we obtain the desired re-
sult.
II The second statement trivially follows from Lemma 2 and
the assumption (e) using the fact
£(x)= £(%,) +°/1F(.x,+ B(x =X, )) (X=X, )dE .
III Let f(x,) = £(X,)  be minimum of f(x); X, # X, -
Then we have
1

fx,) = -F(.x.,)lfa_/'F(x,i-t (X, =X, )) (X, -X,)d1

so that the following relation must hold

1 R aco)
0= ['Flxy+ £ (,-%, ) (=%, )bt 2 [A-(E:Ix,-, l>%’~=°/ 224550,

which is a contradiction.
IV Let X % X, 3 X4, X, € E ;
grad £(x, )= F(x,)=0; grad f(x,)=F(X)=0-

Then we have 0 = (F(x,)-F(x,)) (X = %) > 0 ;

i.e. a contradictien.

Theorem 3. Let E be a space with a weakly compact
sphere, f(X) weakly lower-gemicontinuous functional on
E, x, point of the local minimum of f such that there
exists 2 > 0 such that for {X; O<liX-X, <7}
the relation #(x) > £(x,) holds. Let lIx,-x Il € x,
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w.
f(Xn) — (X, ). Then X, — X, .
'Proof. Let us suppose the contrary. The sequence {X, §

is bounded so that there is a subsequence {.x%}; X X

iy
Xy X X, . Then we have

£0S) & dim £(xp, ) = $0X,) = £(X) = £(X0)
which is a contradiction.

Theorem 4. Let E and £ be defined just as in Theo-
rem 3. Let "’;l{/_"w“ f(x) = and let there be a unique

minimum of f ; let us denote it f(X,) . Then the impli-
cation £(X,) —> £(X,)=> X, 2 X, holds.

Broof. It is clear that #(x) > f(x,) forxe E~{x,§ -
L;t {x, ? be such a sequence that #(x,) — f(X,) .
Either { X, § is bounded and the assertion follows from
Theorem 3 or f X, | — o0 but in this case the assump-
tion f(x, ) — ¥(X,) does not hold.

Theorem 5. Let E be & Banach space with a weakly com—
pact sphere; £(X) functional on E which satisfies all

the conditions of Theorem 1 so that there is nm? f(x) =
xe

=f(X,)=d . Let {X,? be minimizing sequence i.e.
#(x,) —» f(x,) . Let there be a number ¢ > (¢ and a
point t, 6 (0, ) such that for t » t, the inequality
Y(t)>c¢  holds. Then X, — X, -

Broof. Let

o (x,qp)e F£0x)r $fCy)-£(25Y)

We shall arrange the expression on the right-hand side using
formula (2) and Fubini’s theorem:
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g (x,4)= F-[F)-F(2F) I+ Lo [#(y)~#(F5¥)] =
1 -
e A Le e sy

A
- L. [IDF (et 5%, x-q)-D (X5 %0 1. %%, x-y)dt =

11

=L/t D b B b st (xgp ), Koy k- )l
4 4 .

-5 St DH Tt e E et (), Xy, x-S

Using the first assumption in Theorem 1 we obtain
g(x,zy.)a{-}/zr(ﬂx—fyll)' ﬂx-ryﬂtdt-g-r(lx-ryl)'l.x—ryl .
Further, 61 > 0 being arbitrary, there exists m, such
that f (X, ) £€d+€, for all m » m, , Then the follo~
wing relation holds:

G (Xpy %) & ii,_'—fl-:-i -d < &,

2
€4
Choosing € = -5_ we have proved that for arbitrary

£ >0 there exists m, > 0 such that for m > m,
the relation '

(7 Y Ux, - X, 1) I, -x 1< €

holds.

Now, the minimizing sequence {&, § is bounded by the last
assumption of the theorem in question (one can prove it ea
sily by contradiction); let Hx,~X, | £ K < o0 . 1If we

can choose a subsequence {.x,,“; of {x, } such that for
some € > 0  the relation Ix, -%0>€  nolds,
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then

Lim, sy Y (X, =X, 1) KX, =X, I ;m',o'r(t)' €, (>0);

this is in contradiction with (7).

Lemmg 3. Let E be a Banach space with a. weakly compact
sphere; @ (Xx) is a non-linear functional on E . Let
Y (X) = ()= $£(x) for an arbitrary linear functional +
on E. Given a positive number K, let y, (X) satisfy
the conditions of Theorem 1 for thosef far which Il f < K. Let us
denote m\«% (x) by 7y, (X,) . Then there is a positive

number K, (depending on K, ) such that | X, < K, .
Proof. In the first part of the proof of Theorem 1 we
obtained the egtimate

(8) % (<) 2 4 (0)+R- IR (B)+/ 7 (tR)dE),

where Fp (X)= grad y; (x) .
Here we have F, (x) = grad ¢(x)-f = F(x)-f.

From (8) it follows ’

O(x) 2 $(O)+R-(-IF (O - 2K +/ ¥ (tR)dE) ;
according to this. inequality there e;ists Re >0 such
that for R > R, the relation ¢(x)> ¢ (8) holds.
Now it can be shown clearly that for arbitrary K, > R,

there is I x, I € K, . Actually, if If I & K, , we obtain
from (8) ,
% (X)1- Ky >4, ()~ 4P (8 -K +/ 7 (tR)AtE

and - 13(Q)I-K 3 -1 (8)I-2K, , 8o that the inequality
V(%) >, (8) holds on the sphere Ix|ll = R = R,
(where R, is a number, R, € R, ) and the point of
min ¥, (X) cannot be contained outside of sphere
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)l x Il = Kz .
Remark 4. Roughly speaking, if the functionals f{f are

in a fixed sphere then there is a fixed sphere which contains
all the points of mim 4 (X) (under certain conditions).

Theorem 6. Let E be a Banach space with a weakly com~
pact sphere, let @ Dbe a non-linear functional on E . Let
4 (1= 0,1,2,...) be linear functionals on E , 5 —>
— % (in E* ) (m=1,2,... ), Let us write yg(x)ﬂb(.x)—
~£;(X), Let ¥; (x) satisfy the conditions of Theorem l.
Let %(xi)=m%(.x). Then X, — X, in E .

Proof. X; 1s an extremal point of functional %} (X)
so that qrad ¥, (X;) = 0, i.e.

0 = qrad Y, (x,)= grad ¢(Xy,)-f, (m=0,1,2,...) -

From this fact it follows

lgrad ¢ (X, ) - grad ¢ (X = Nfn - f e o,
and further

(9) Ilglpa,d, ¢(.>(,,,,)-qw.d,q>(x,)ﬂ £ lfy- 1% 'm) 0

It is qrad ¢(X)Ah=Dd(x;, )  ror A e E. Let
M, = X, ~ X, . Because of f, —» f, <there is a positive num-

ber K, such that [ f; [ & K1 and, according to Lemma 3, the-
re 1s a number K, > 0  such that fx; I £ K, , so that
4, Il €K . Now, according to Remark 1, we have

Db (X s 1) = D (X, )m [ D3O (i £ (= X,), iy X X0 )bt

and if A, =X,- X, we obtain
DO ( Xy #im ) = DO (X, 1) 2 7 (b DA A 1

Let € be an arbitrary positive number. Now, for €, = —-

there 18 m, > U such that far m > M, the following
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relation holds (according to (9)):
yllh, 1) 1A, | £ Igrad $(x,)- grad S, )11, I<€,- K=¢€
so that we have proved:
for arbitrary € > 0  there exists m, > (J such that for
m > m, the following relation holds: 2© (A X, = X, Il) -
ol x, - X,l< €. Now, as in Theorem 5, we obtain X, —»
— X, ¢

Remark. After the paper was submitted the authors be-
came aware that Theorem 1 is stated in "M.M, Vajnberg: O
minimume vypuklych funkcionalov, UMN 20(1965),121,No.l,
239-240" without proof. ’
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