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Commentationes Mathematicae U n i v e r s i t a t i s Carolinae 

7, 4 (1966) 

CONSISTENCY THEOREMS CONNECTED WITH SOME C01BINATO.IU.AL 

PROBLEMS 

Lev BUKOVSKt, KoSice 

The main purpose of t h i s note i s to prove the c o n s i s ­

tency of the p o s i t i v e s o l u t i o n of a problem of G. Kurepa. 

The terminology and notat ion are those of £ 2 ] , C 3 ] . For no­

tions from partition calculus see [ 1 ] . 

We say that the set X possesses property CK,ti,) i f f 

(l,oc) X £ PCoO > 

te,<*,) X>?eec4.1 , ^^^--^ 
(3fot) f ^ ) ^ f i ^ A ^ ^ , - 4 { ^ n / v . ^ 6 X J < ? ^ ) • 

G. Kurepa has stated the following problems 

Is there a set X with property (K,l)? 

The positive solution of this problem leads to many ot­

her theorems (for example ^2-V->-IJX^3^ ̂ ^ - see[lj f 

p.154). If Kfr is strongly inaccessible, then every set with 

properties (l,ot) and (2,ac) also possesses property (3,00). 

Theorem. Suppose that 

(4) £&c is an inaccessible cardinal in the sense of Godel's 

A -model, 

(5) in the A -model, there is no cardinal between -X̂ . and 

(6) o)^ is regular. 

Then the set X * 9 (G±) r\ L ( i . e . the set of a l l con-
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structible subsets of C*^ ) possesses the property (K9*c). 

Proof. Prom (5), X ~ ^eC4.i Let <&&a^ ,%><*?& • 

Since COA i s regular, then there i s a /3 € cd^ such that 

ty £ (i • Using (4) y we may suppose that ft> i s a cardinal 

number in the sense of the A -model. We have to prove 

that V **{,* n/y,: x e X} i s of power less than rt^ . Set 

fdxn/y,) a (lax tor X e X . Thus f i s a one-to-one 

mapping of y into ^Pf/JML ( L i s the class cf a l l 

constructible s e t s ) . Let y be the f i r s t cardinal number 

greater than /S in the aense of the A -model. Then there 

i s a one-to-one mapping of PCfl)r\L onto y* „ Hence the­

re i s a one-to-one mapping of Y into y • Since y € <*ic 

(using (4 ) ) , y < #<< • This completes the proof. 

Conditions (4) and (5) hold in the model V construc­

ted in £4J (with oC «• A , see p.441). Thus, we have the fo l ­

lowing 

Met at he or em. Let _A be a particular ordinal number 

(in the sense of £3j) such that the regularity of CO^ i s 

provable in the set theory S . If the theory .5- with 

the axiom "there i s an inaccessible cardinal greater than 

&>A " i s consistent, then the theory _£. with the axiom 

"there i s a set with property (K,A-M ) " i s also consistent. 

Corollary. If the existence of an Inaccessible cardinal 

greater than o^ i s consistent with X , then in 2L 

i t cannot be proved that 

Proof. It suffices to prove that the existence of a set 

X with property (Kf oC 4 4 ) implies K ^ ^ t ^ l ^ ^ . 
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This i s well known. I shall sketch the proof suggested to me 

by Mr. Hajnal. 

By definition, Xj^f^t^ 3 % ^ , *^ i s equiva­

lent to the following sentence: 

There i s a partition D^ , y> e o ^ ^ of C X l \ X -
m^<*-f-2 3 u c n "tnat f o r e v e r y A S X , D-£ ^oc4-i * i f 

^ • ^ A -> 5 ^ H^ ., then C A 3 2 * (J CL ( s e e t l ] , 

p.144)* 

Now, we define such a partition. Let X possess the 

property (K,ot4-'1 ) . Set 

í*ilИ € Э.p н # x , ^ €X & ((x-џ)vfy-x))эý Ã>Г V € CÚ^+ 1 

Since X € X~* X £> 6ic4-1 , one has U J^ -=• £ X J1 , 

Suppose that there are A £ X, D S? cO^ f # .« #,4. , $ * # * 

such that [ A ] 2 £ U D^ . Thus, if y , l ^ 6 / l , then 

((x-«})u(ty-x))r\D 4- 0 . Set y a - C x n 3 ) : o c € A i - I f 

* , ^ € A , then .X n D 4- f n $ ? therefore 

7-= # . - a contradiction with (3 ,0 t -M) . 

Consistency of many other assertions may be proved, for 

example the following 

Metatheorem. If the existence of an inaccessible cardi-

then .2-- w nal i s consistent with 21 , then 51 with the axiom 

* s - ^ C * V * , 2 , * 0 <*m SL ° - * a , 2*"~ #*3 ) ^ consis­

tent. 

Proof. Prom [4] ,[6J i t follow Jhat there is a model of 

the theory SL* in which: 2**= tt2 , 2 * « * 3 , <^t'is an 

inaccessible cardinal in the senee of the A -model, there 

are no cardinals in the sense of the A -model between a)1, 

G>2 and between d>2 , <*>3 ? there is a perfect clasa M 
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( i . e . M i s almost universal, complete and closed with res ­

pect to the fundamentai operations, see £3J, p.324) such 

that P (0*4 ) A M - # 3 f 6Jf i s (strongiy) inaccessibie 

in the sense of M * 

To prove the mjetatheorem, i t suffices to define a par­

t i t i o n of C ^ ^ ^ o M J 2 ; 

The connection between Kurepa's problem and Mycieiski's 

axiom of determinateness (see C53) may be interesting, be­

cause Mycielski's axiom (A) implies (4) for oC *• 1 -

Seme generalizations of results of th is paper wiXX be 

published later. 

I shouXd Xike to express my thanks to Mr. Hajnai for 

vaXuabXe advice* 
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