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CONSISTENCY THEOREMS CONNECTED WITH SOME COMBINATORIAL
PROBLEMS
Lev BUKOVSKY, Kosice

The main purpose of this note is to prove the consis=-
tency of the positive solution of a problem of G. Kurepa.
The terminology and notation are those of (2],(3]. For no-
tions from partition calculus see [1].

We say that the set X possesses proﬁerty (K,et) iff
(1,x) X & Plg),

(2,) X > ¥ iy )
(3,x) (Vq)(ysw‘&§.<ﬂ,.4{m<?%) .
G. Kurepa has stated the following problem:
Is there a set X with property (K,1)?
The positive solution of this problem leads to many ot-
her theorems (for example ‘&2-\—»[&]:;1 » %o - gee[1],
p.154). If & is strongly inaccessible, then every set with
properties (1,0¢) and (2,x) also possesses property (3,c).
Theorem. Suppose that
(4) @) 1s an inaccessible cardinal in the sense of Gddel’s
A -model,

(5) in the A -model, there is no cardinal between &) and
Wit

(6) @ 1is regular,

Then the set X« P(@y)A L  (i.e. the set of all con-
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structible subsets of w,, ) possesses the property (K,s).
Broof. From (5), X-xdh Let ysa , 4 <G -
Since &, 1is regular, then there is a 3 € @ such that
24 S (3. Using (4), we may suppose that 3 is a cerdinal
" number in the sense of the / -model. We have to prove
that Y ={XnYy: x € X} 1is of power less than &, . Set
fxnny) = Anx for X € X . Thus ¥ is a one-to=-one
mapping of Y into P(A)AL (L 4is the class o all
constructible setg). Let Y be the first cardinal number
greater than (3 in the gense of the A -model. Then there
is a one~to-one mapping of P(/3)AL onto Yy . Hence the-
re is a one-to-one mapping of ¥ into 9* . Since *€ G
(using (4)), V < €4 o This completes the proof.
Conditions (4) and (5) hold in the model V construc-
ted in [4) (with o = , see p.44l). Thus, we bave the fol-
lowing
Metgtheorem. Let A be a particular ordinal number
(in the sense of [3]) such that the regularity of &), is
provable in the set theory Z* . If the theory Z* with
the axiom "there is an inaccessible cardinal greater than
@, " is consistent, then the theory > ' with the axiom
"there is a set with property (K,A+1) " is also consistent.
Corollary. If the existence of an inaccessible cardinal
greater than &), 1is consistent with =* , then in =*
it cannot be proved that

Rpsa 7 [%,

I ‘A4,
Proof. It suffices to prove that the existence of a set

X with property (K, + 1) implies & —\->Ca‘..“4] R
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This is well known. I shall sketch the proof suggested to me
by Mr. Hajnal.
2 -

By definition, 7%&4[""[“&44 ] Reiss P is equiva
lent to the following sentence:

There is a partition J,, » € G} ;4 of[X1), X=
2™ ;g Such that for every A € X,De @y, , 1if
A =%, , D < #,, thnlA] $gl;JD J, (see (1],
p.1l44).

Now, we define such a partition. Let X possess the
property (K,oc+1 ). Set W

{%,%3€d,=.x,4 €eX& (x-ylo@y~xD» for vea),;,

Since X €X—X& a1, , one has H);}J” = (X212,
Suppose that there are A S X, Dsay, , A=%,, Den,
such that [A]1299D39 . Thus, if X, € A , then
((x-yI)0(gp-xNAD + 0. Set Y=4{xnD:xeA}.1r
X, % €A, then XnD + 4 aD, therefore
V= ¥ i, - @ contradiction with (3,004+1).

Consistency of many other assertions may be proved, for
example the following

Metatheorem. If the existence of an inaccessible cardi-.
nal is consistent with Z* s then Z* with the axiom
?Cs—\'*[?&,‘l;/zq ®, (and 2&":2&2, 2™ X, ) is consis-
tent.

Proof. From (4] ,(6] it follow that there is a model of
the theory S * inwhich: 2™ = %,, 2% - 2y, @;'1s an

inaccessible cardinal in the sense of the A -model, there

are no cardinals in the sense of the A -model between @y,

@, and between @, , @, , there is a perfect class M
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(i.ec M 1is almost universal, complete and closed with res-
pect to the funda;nental operations, see [3], p.324) such
that m -%,, @
in the sense of M .

. is(strongly) inaccessible
To prove the metatheorem, it suffices to define a par-
tition of [ P@ YA M1

3“-{{'y,z}:q,,z¢(t’(a), INM& (-2 I R-y NN x4 0 for X $GY,X=2, .

The connection between Kurepa's problem and Ilycieieki's
axiom of determinateness (see [5]) may be interesting, be-
cause Mycielski’s axiom (A) implies (4) for o« 1.

Some generalizations of results of this paper will be
published later.

I should like to express my thanks to Mr. Hajnal for
valuable advice.
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