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Let r

Q)= 6lws) i‘%,a'*';’ Ay g
be a positive definite quadratic form, whose discriminant

will be dencted by D and M; >0, £;, a, be real

numbere (1 =1,2,.7.- P ). In order to simplify the for-
mlation of our results suppose that r > 5. For x > 0,
consider the function

i F i
(1) A(x)= Zez:ni.,x,,,w,

where the summation runs over all systems u:(u,,,.«, 4, )

of real numbers, satisfying

My = Ay (mod M;) for 1=1,2,...,r
and
(2) Q) x .

In the particular case when
(3) £;=0,8;=0,M; =1 for i=42,..,r

(1) gives the number of the lattice points in the closed
ellipsoid (2). Put

v

£ 4 triE el
4) Vix) = Zx-e _
DM, Mg +1)
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(where d'= 1 if all numbers or, M, @, M.y M, are in-
tegers and J = 0 otherwise), and

P(x)= Alx) - V(x);
then

-7
(5) P(x) = 0(x )

and, if A(x)#% 0, also
rA
(6) P(x)=LL(x % )

as shown by Landau in [1].

The function P(x ) (especially, under assumption
(3)) has been investigated by many authors (e.g. Jarnik,
Landau, Mintz, Petersson, Walfisz), In what follows, consi-
der the case when all numbers & ., M; and A
(1,4=1,2,...,P) are integers (cf. Walfisz [4]). Expres-
sing the function (1) by means of the corresponding theta=-
function (Jarnfk [2] and [{3) ) and making use of transforma=
tional relations we can prove the following theorems.

Theoren 1. (A generalization of so-called First Peter-
sgon Theorem.) Let o, o, , .-, X, be rational num-
bers and let H denote the least common denominator of
%M, M, ..., €, M, . Por a natural k and integer h
such that

k =0(modH) and (h,k)=1

define S, . by
k e_z,rg, 2 Q@ Mﬂlg)ﬂﬂié ,x‘-(n-i M;*lq;)

Sum S

1k Ay Qg B, = 4
Put
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ezmkx

-1 & I i 5 2
(x)= = h#+1
(D H; 005 P - 4),(,%,““;‘ 7 T T

, T
for any real number X and 0 # < 3 ~ 1. Then, the abo-
" ve series converges for all x (apsolutely if z >0 ),
and the formula

§
(8) 7(P(><+0)+P(x -0)= —ﬁ——- > ¢ TH; ()£ 0(x* £ g %)

M; oq<£-1

holds.

Thus, in this case, we have
P(x) = 0(x*™")
and if, in addition, for some h,k S,, # 0 , then
Px) = (xE");
this has been shown first by Walfisze.
In "singular" case, i.e. if sh,k =0 for all h,
K then we get - as a consequence of (7) and (8) -
P(x) = 0(x%Lgx) .
The question of the exact order of the function P(X)
remains in the latter case open (Walfisz (4], Linnik [5]).
However, for the function
M(x)-b/'lP(ry)l dy
the matter i1s settled by the following

Theorem 2.
o X ) r-1y
M(x) — T Z '*’Tb‘k"“' + 0(x
l:nrc‘(r-nn M‘r'c-z).::(:,“,",:';"‘ k-2 ht

In the "singular" case,
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1
M(x)=0(xE*%)
and, if moreover A(x) % 0 , also
r.1
M(x)=(xT'2) .

The mean value
\/% M(x)
of the function P(X) 1s therefore in the second case
of order )(_f’ii (comp. (6)).
If at least one of the numbers o, &, ,..., 01, 18
irrational, we get results of a different type.
Theorem 3. (see [6] ) a) If at least one of the num~

bers o, K,, 5 K, is irrational then
. .,
9) P(x)=o(xT™7) .

b) For any positive decreasing function ¢ (Xx) de-
fined for x >0 such that
) ¢ (X) = (1),
there exists a system (ot,, o€, ..., ot ) such that (9)
holds and »
P(x) = N (xE"g(x).
o) There exists a set M c E,. of zero Lebesgue
measure such that for any system (o¢,,<,,:..,. ) & M
P(x) = 0(x¥*E)
holds for an arbitrary € > 0 .

On the other hand, the following interesting state-

ment can be proved.
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EM‘!.EA- r
1 1 nt .xi

1
2 - £-1y,
b/'_/..,flP(x)l dac,,docz...dac', \/JTh'M.;l"(-gM) + 0(x*%™)

[

Restricting ourselves to the case

(10) o =0y =...=c% = ot (o irrational), &= g=...=4 = 0

"
we can express the relation between the arithmetic charac-
ter of «« and the evaluation of the upper and lower bounds
of the function P(x) very exactly.

Theorem 5. Let (10) hold, and let 9 (9= » (x)) be
the supremum of those numbers 3, /3 > 0 for which the

inequality min look-pl < %‘
p integer
with a sultable ¢ holds for infinitely many natural num-
bersk(l).
Put

1y 29+1
f‘(%—f) 7:4
(11'fr=+ao,put+'--%~1 ). Then
P(x)=0(x**%)
and
P(,‘)-_Q.C.x;")

for an arbitrary positive € , 1l.e.
Lim sufe «agll"’(‘.x)l’= £

X =¥ 00 eg

(1) 1f q,,q,, 9,,--- are the partial denominators of &£
then
n-> o 29
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The above results were read by the author at the In-
ternational Congress of Mathematicians in Moscow, August
16~26,1966. The proofs and some further results on the

subject will appear in Czechoslovak Mathematical Journal
and Acta Arithmetica.
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