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Commentationes Mathematicae Universitatis Carolinae

7,4 (1966)

APPLICATION OF SOME EXISTENCE THEOREMS FOR THE SOLUTIONS OF
HAMMERSTEIN INTEGRAL EQUATIONS
Josef KOLOMf, Praha

The purpose of this note is to present some appli;:a-
tions of the existence theorems [1],[2] concerning the so-
lutions of Hammerstein equations. For recent imwestigations
of these topics see for instance [3],(41,(51,(61,(7].

1. Throughout this paper ] denotes the identity map-
ping of a real or complex separable and completg Hilbert
space X, X # (0). A linear continuous mapping A : X=X
of a Hilbert space X into X is said to be normal ifAA¥*=
= A*¥A | where A* denotes the mapping adjoimt to A .
For the convenience of reader we recall the theorems which
we shall use in the sequel.

Theorem 1 [1]. Let F: X — X  be a mapping of a Hilw
bert space X into X which has the Giteaux derivative
F/(X) for every x € X . Let PF/(x) be a normal
mapping for every X € X and such that (PF/(x)h,#)2 0
for every X € X, 4 € X, where P is a linear mapping
of X into X having an inverse P lPIé(::l&b NF .
If there exist positive numbers «<, ¥, 2 < 1 such that
Ix -PF(s)he ¥y Ix) whenever !lelaoc,'then
the equation F(X) = 4 has at least one solution for
every 4 € X .
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Remark 1. Let F : X— X be a mapping of a Hilbert

space X into X ., If the number

F(.x)u JFCGOL,
LS 0 S ror A Y B

is finite, then F is linearly upper bounded (i.e. there
exist o, ¥ > 0 such that N F(x))| £ ¥ Ix /| when-
ever I Xl & & ); also conversely. It is easy to prove
the

Theoreg 2. Let F: X—=>X P: X>X, ¢:X—> X be map-
pings of a Hilbert space X into X, ¢, P be linear
continuous having bounded inverses P~', @™ . Let the
inequality

IPF(w) - PF(r)-g(u-»)l & o< l -2l

hold for every 4, v € X with ot g™l £ 1 . If there

exist positive numbere o, 7, ¥< gl such that
e (w)-PFw)| € mnw‘ whenever l4 l & o, then

_the equation F(u) = 4 has at least one solution for
every 4y € X. V

Theorep 3 [2]. Let F: X — X be a mapping of a
real Hilbert space X into X such that for every x € Ec

c X it has the GAteaux derivative F‘(X) and that
W (BF(x)h,m)zm Al m>0

holds for every X € E, h € X , where E is a convex clo-
sed subset of X and P, is a linear continuous mapping
of X into X having an inverse E;—" . Let the closed
ball D={x e X: Ix-X, Ml £ 2 } be contained
in E ,where X, ., = X, - PF(x,)+ P$, (n=0,1,2,.
W), P=BP, 0<cd<c2mi’ s k= pup 1B Fi(x) I’

- 462 -



< +00, g 2 o, (1-08, Y x,~ X, oty = pupL 0 I-PFx)N,
X, is an arbitrary element from E .

Then the equation F(X)=f has a unique solution
x* in D . Furthermore, ﬂ;% hx, - X*N =0 and
Ix* - X, | & oG (1- o5 )%, = x, Il . If'zﬁa-'v},zmk:z
then oty & (1 -mieH ",

Remgrk 2. If (1) is fulfilled for every X, € X,
then we obtain a global existence theorem. In this case the
assumption D ¢ E  1is unnecessary.

According to [8],[9],[10] we can state the theorem 5
[2] in the following form.

-

Theorem 4. Let F: X — X be a mapping of a Hilbert
space X into X such that in a convex closed bounded set
E ¢ X it has the Gateaux derivative F’(X)

- Let
PF‘’(x) be a normal mapping for every X € E  and such
that (PF/ (X)), ) = 0 for every X € E, heX,

where P is a linear mapping of X into X having an in-
verse P~' am IPI&(pup N F )" | 1e
(I-PFYEc E then the equation F(X )= (0 has
at least one solution X* in E . Moreover, Xy —> X weak-
ly in X , where X,,, = X,-BPF(X,) 0<p3 <1
(n=0,1,2,...) and X, 1s an arbitrary element from E .

2. Consider the equation
2) x(s)—?tff((s,f)g.(.x(t),t)d.t=F(s) ,
G 7

’

where the measurable function K(s,t) is defined on
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Gx G, G 1e a measurable subset of E, (E, denotes
the euclidean s -space). Throughout this paper we assume
that a linear operator A maps g resl space L,_(G') in-
to itself and id defined on L, (G) by
(3) Ax(t)=K(s,t)x(t)dt.

G

In the sequel, ¢(x(t)) = X (x(t),t ) denotes an ope-
rator of Nemytzkij (cf.[1l] ,chapt.VI.), A is a real para-
meter and f(s) an arbitrary function from L, (G) .
Theorem 5. Let the following conditions be fulfilled:

1° A function Q (X, t) nmeasurable in t € G has a
partial derivative g, (x, t) which is continuous
in X € (-00,+ 00 ) and for every X € (~00,+ c0) and
almost every t € G there is -Nﬁgf,‘(x,t)éM
(0<N,M<+ o0, N, M =const.). 2° o 1linear mapping
A is self-adjoint positive definite (A& m I, m > 0)
in L, (G) and such that IAIMIAIl &1, 3°|g(x,t)l¢
éé%(t“x |1~ v (t) (t e G, x €(~00,+00) ,where
Q@ (te Lé-,(G'J’ O<aop <1 (hem=1,2,.,m), y(t)e L, (G).

Then the equation (2) has at least cne solution in
LlCG) for every f € L, (G) .

Proof. We réwrite the equation (2) in the form
(4) X=AAP(X)=f .

According to 2° there exist the mappings A.i , A~%
and they are bounded self-adjoint positive definite in
L,(G) ana R(AL) = L,(G), where R(A%) denotes
the range of A% | Instead of (4), we shall solve the

equation

(5) x -AAt ¢ (Atx)= Ate,
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Now, if x* is & solution of (5), then A% x* is a
solution of (4). According to the assumption 1° (cf.[11],
§ 20), the mapping ¢ : L, (G) —» L,(G) 1is continu-
ous and it has a linear bounded Gateaux differential
D¢ (x,A)=go(x(t),t)h(t) =P (x) A for every x,
A€ L,(G). Therefore, if € 4s an arbitrary positive
number, then there exists a O'(€) > 0 such that, for
every t with |t| <d(€) and A € L, (G) we have
1w At tALRI<e I AR I, wnere w (AR,
t A% ) = d(ATx+t ARR) - O (Atx) -t DO (A%, Afh).
set B (x)= At p(Atx) ; then
400 (x+th)-B(x) ’Aig& (A%-X;t )A%’h =
- L Ate abx, tAta). ‘

1 |t] < d"(e) , we obtain that ll-%— Ato (Atx,
tAt p)ll<e .
Hence &

. a(x+t:‘)-a(x)= Abg, (Atx ), £)AERCE).
t-0

o

Thus the mapping Q : L, (G) — L, (G) has a 11~
near bounded GAteaux differentisl

(6) Dax, /)= A(xph = Alg, (Alx (), ) ALl (2)

on the space L, (G). Moreover, assuming 2°,
A0 (x )M, R =2 g (At (8),£) (AR (E)'dt &

G .
slAIM (A*zh, Alp) =IAIM(Ah,h)&IAIM NANLNLANEE (402

for every X, 4 € L, (G). Thus (F(x)MHh) &0 for
every x, M € L, (G) . According to 1° and [11, § 20.2)),
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cf. also [12], § 5, we see that D (X, hh) is contimuous
in X e L,(G). But ¢ (x) 1s a potential operator in
L,(G);, P(x)=qgrad ¢ (x) , where
9 (x)= g+ dt [Fg utrdu,
Using Theorem 5.1 [11‘: § SJowe get that
(DP(x, M), h,) = (DP (X, ), ).
Hence
(AL D& (A%, Atn,), h) = (Db (Alx, ALn,), ALh,) =
- (Db(ALx, Adh), Abn) = (41D (Afx, ALh,), h) =
= (har AL DG (ARx, AL, ).
Thus D G, (x,A)=@'(x) A 1s a self-adjoint operator in
L,(G) for every x € L,(G). Hence F’(x) 1s a self-
adjoint mapping for every X € L, (G).
By (6) and according to [13,pp.250),
IR ORIt & HAT TGy (Atx), ¢) At mi? s
£ N2JAR IR, &
where N, = mac (M, N). Henco“/‘zﬁbla'(x)”équA” .
Using 3° we have
106 & 13 Sk rat Fixt Hiy13 -
FY] ' ket &
Thus @ 1s ssymptotically close to zero and is bounded on
L, (G) (ef.[11], chapt.VI). According to lemma 1 [14],
¢(A&) and ohviously also A{ ¢ (A%)  are asymptoti-
cally close to sero. Set P= 231 , where 2% 1s a fixea
ouber sstisfying the inequality O< ¥ < (1+IAIN, A N,
Then Ix-BF(x) N6 (1-3) Ix B+ B IATTAT P AT .
Taking 0 <& < ¥} , there exists @ positive number N, such
that, for every X € L, with Axl & N, , we have
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Al Ai(b (Aji.x Ji <€ x|l . Clearly, for every X €
el, with Il xIl 2 N, there 1a Ix-HF(x)I &y I x1,
where o = 1- 0"+ € < 1, According to Theorem 1, the equa-
tion (5) has at least one solution X* in L, (G). Therefo-
re Ai x* is a solution of (4). This proves the exis-
tence and, thus, concludes the proof of the theorem.
Corollary l. Under the assumptions 1°, 3° of Theorem
1, let A be & self-adjoint positive ( (AX,x)& 0 for

every x € L, ) mapping in L, (G ) such thatMliAllg 1.
Then the equation
x(s) - [K(s,t) g (x(t),t)dt = 0

has at least one Gsolt:d;.’mn in L, (G).

Theorep 6. Let the following conditions be fulfilled:
l? A 1is a positive ( (A.x,.x Y2 0 for every x € L, (¢)
self-adjoint mapping from L,(G) into L, (G) such that
%é{:«p IK(s,t) I=d?’< + 00 , where G is a subset of
E, with mes (G)<+ 00, 2° The function @ (X,t) mea-
surable in t € O has a continuous partial derivative
g, (X,t) 10 xe<l-¢c,c>, (e > 0) andtor
every X € {=c, c? and almost every t € G the-

reis 0 £gu(X,t)&M<+ 00 amg(0t)eLl,©)
Then the equation
m x(s)+@/K(s,t)g.Cx(t),{:)d,t-0

with O< w < RIAL SO, & (0) = @(0,t), has at least
one solution X* in A&(DR) c L, C(G) , where Dy =
={x el AxI&R,R=cd™"} . uceover, 1f

(8) 0< P < Mn(k’,2Rat~"),
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where de=(1+ w MIADY, a =R-w 1A% ¢ (0)N, &-=R%--
~@MAS 1, then Am Ix,-x*1 =0,

where
(9) xmAYE K- () K - @PALS(AER,) K =0
and 1x, - x*1 & w &y (1-&, ) NANIS (0) I with

0< &; < 1.
Proof. By the Golomb-Vajnberg theorem {11, lemma 24.1]
we have that vtg.obu.fleixl £ dlilxl

for every
X € L, (G), where A!l

denotes a positive square
root of A, Thus for every x € D, R=cd™' there is
vl MlAixI £c¢c ad
(10 02 ¢, (Afx(t),t) &M< + o0 .

Using 2° we have
Ig(x.t )1 & MIx|+Ig-0,t)1&£2cM+Ig(0,8)l=g()e L, (&),
for every X € (= C, ¢ > and almost every 1‘5 € G. Thus
we can extend the function @ (X , £ ) outside the line~
segnent {— ¢, c > 1in such a manner that, according to
[11, theorem 19.2], (X)) = g(x(t),t) 1s a cont:lnuous
nepping from L, (G) into itself. Set B(x)=A d)(A%.X)-
By (10) and using the results of [11, § 20] we see that’
the mapping @ : L, —> Lz hes, for every X € Dg ,
linear bounded Gatesux differentisl
DQ(x, )= Aok = Alg, (Aix, 114 A, he L, 6.
Pat F(x)= x + @ B (x)
and e L, (G)
(F(x)h, h)- (9] +(wf9v,‘(Aix t)(A*Jb) dt 2 1al*
ana  Auft |FO0N" & (T+e MIAD? . We shall use

theo_remeith E = DR,%-O me=1, B=1 e

« Then for every X € DR
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"= (1+ «MIAl )2 . It remains to prove that
Dy, = {xeL Ix-%, | € g3« Dy, wnere X«
~-a$ ARG C0), ny= gy (1-ct >~4‘umm’¢co)n, oy -
- /w.fuul q&F'Cu)uéu 2a$+q9%) A<t [2] .
Since ll.x M= LA d)(O)" <#BR< R , then X, € 'DR .
According to (8) we have that
B8R - @ I At OIP& 2 R 2R e N AYp (01 .
adaa R? ana miltiply by 2% . Then s
R'&} & (R-wB IA G 0IN? .  Hence wab IA &
£R(1- o(% ) , and therefore
@ I AL g o)l (Zy (1~ Z)"+ 1R .
Thus we have X, Il + %, £ R with 1, £ Z, |
where 7, = wBFy (1-a,0" I1A¥¢ 0) [ .  Hence
D c D . According to theorem 3, the equation

X +(uA’¢(A’.><) =0

has a unique solution .x* in D, and also in .'D,gd

Moreover, ,&/m— I, -.x* I = 0 , where {§ ? is
defined by (9) and I &y~ x¥ 12 (uqﬁ% -0, 1A %GO, £O1.
set x* = At x , 8o that x* 1s a solution of (7) and

x* e A‘(D )c L, (G). Now

D™ “ll_lIA* AR NE NAR IR, - XA N 2
= (a,qsoca -Zy"1AN g0, t)] .

The proof is complete.

Corollary 2. Let the following conditions be fulfilled:
1° A  is a positive self-adjoint continuous mapping from
L,(G) into itself, where G is & measurable subset of E,.
2° A function g.(X,t) measurable in t € G has a con-

~
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timous partial derivative g, (X, t) in X €
€(-00,+00) and for every X € (-0, + @) and almost
every t € G there is 0 & @4 (X, %) € M< + o0,
(M = const.) .

Then the equation (7) has at least one solution X*
in L, (G) forevery w (0 < & < oo . Moreover,
1rO<f\9’<2(1+(u.M|lAll)2‘ , thenxw—-)x*
in the norm topology of L, (G) with the rate of a
geometric sequence, where X, =A"X , X, «(1-1)X, -

- (w'l?'A"’(pCA"-K,,‘,) end X, 1s an arbit-
rary element of L, (G) . .

Iheorem 7. Let the f.ollo;ling conditions be fulfilled:
1° A function g (X,t )  measurable in t € G has
a continuous partial derivative g,; (x,t) in X €
e<-c,c>,(c>0),and for every x € {—-c¢,c > and
almost every t € G  with mes (G ) <+ c0  there is
-N& g, (x,t)& M, (0<N,M<+ 0o, M, N are
constants) amd g (0,t) 6 L, (G) . 2° A 1is a po-
sitive definite (A @ m I,m > 0 ) self-adjoint map-
- ping from L, (G) into itself such that vg%e%u/le(s,t)L-
=d?<+c0 amlAINIAIM< 1, 1¢
(1) 0<d<Mn(mib’ 2Ralt™),
where my<1-IAIMIAN, ¥a 14N 1AL,

N,= max (N, M), R= ed'Vm ,a=Rm.-IAAGCON,

, ‘

bekR-ILAG (O, ¢ (0=g00, t),then the equation
X (s)~ aéfk (s,t)g(x(t),t)dt=0

‘.Mh A< _!IT(%%TF hes a unique solution X¥* in

N

~
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the ball DR , Where :DR {x:lx- X, Il & R,,, ¢
x,=1MA¢(0) Ry= ot (1~ oc,,)"llo(,ll = 1-2m H+8%.
Moreover, ”/E,wg X~ X*N= 0, Nx,~ -X*" £
EPX(1-Z ' AIA SO,  wnere Xp,, = X, -
I -AAP(X,), (m=0,1,2,...) ana X, = O.

Proof. Since A 2 m I, (m > 0), thenAiém%I

and Vm & | A‘x Il x “'4 for every X €
e L) Hence Vim £ it NA X X I-'= m (A%) .
But

- '1 1
IIA1||=mév;n-’-

Since R(A”_) =L, (G), then according to the Vajnberg-
Golomb theorem for every X € L, (G) there is
viai papy | X (B)| = anal mups tAiCAixn £

€l Atxls Fﬂxﬂ
Denote :DR={X lxll £ R 3 , were R=cd'Vm .
Then for every x € D, ¢ L, (G) we have that
%M'X(t”.ﬁ c . Thus for every X € Dy we
get
(12) _Néq&(&(t),f)éM.

Since

g (x,t) &N IxI+1g(0,t)€2cN, +Ig®, t)=g(t)e L,(G)
for every X€ <—¢C, ¢ >  and slmcet every t € G,
we extend the function 9_(x »t ) outside the line-seg-
ment {— ¢, ¢ > 4n such a manner that, according to [11,
theorem 19.21, ¢ (X)) = ¢ (x(£),+t) 1s a continuous
mapping from L, (&) into L, (G). In view of 1°, 2°
and (12) we have that (F(X)h,hdzm, LA It
IF(x)l & 1+ N IAN for every x € [; and
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A eche). since P < 1,m, < 1, then [ X, I~
=B IAAP (Dl < erﬂﬁ < R . Therefore X, € DR .
Using (11) it is easy to show that ng c Dy - me
assertions of our Theorem follow from Theorem 3. This coh-
cludes the proof.

Repaprk 3. Under the assumptions of Theorem 6 let
be a positive definite (A @ m I, m >0) operator in
L, (G). Then the equation (7) has a unique solution x*
in the ball Dy = fx:0x-X Il € £4 § ,  where

s wdAYO0), H=udE A-FYNASON, & =1- -2+
+1‘H¢« ka(1+@MIAIY and ¥ satisfies (< 2 < Min (R
2R a(r"’ a=R-w AN, L=k R-u NAGON, a-ew’r
Moreover,
o 1% X% = 0, - X*1 & @ HEL (1- ZyMAGON ,
Where Ko™ % -d(x +(uofK(s,t>9(>sn(t) t)dt), X,=0,n.=0,4,2,...).

corollary 3. Let the following conditions be fulfil-
led: 1° A function g (X, t) measurable in t € G has
a continuous partial derivative ¢ (X, t) in X €
€ (-00,+00) and for every X € (~00,+c0) and almost
every t € G thereis - N £ g, (x,t)& M ,
where M, N are constants, 0 <M, N<+o and G 1s
a measurable subset of E, . 2° A is a positive self-adjoint
mapping from L, (G) into itself and such that [2IMIAl<1 .

Then the equation (2) with fe L, (G)  has a

unique aolution x*. in L, (G). Maeover, if O< ¥ <
<2mAk” , where m = 1~ m\M NAI ,k=(1+IAIND,

Ny = Max (M,N7 ) then Lm ¥ - x*Il = 0, where
X, ()= X (8)-1(x (8)-A [K(5,£)g.(x,($), £ )dE)+ B£(s)
é

-
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and X, is an arbitrary element from L, (G) . The error
f x*= x, Il satisfies Il x,-x*I& og:("l—d’,r‘"x.,- x, Il
with 0<og < 1, If d=dh=mbk™" | then ay <
£ (1-mAHE . ’
Far the result of Corollary 3 compare [1l,th.10,2) and
[15].

In the sequel we use the following

Legms } [11,§ 19].1f ¢ (x) = g(x(t),¢t) is an ope-
rator of Nemytzkij and ¢ : L,(G) — L, (G) , then
(13) [1gx(), ) < ¢, +0, Gj‘lx(t)l‘dt,

G

where ¢, , &, are constants, ¢,, &; = 0 -

Let us solve the equation (2) with A= 1, f(s)=0.
We egtablish the following

Theorem 8. Let the following conditions be fulfilled:
1° A function g.(X,t) measurable in t € G has a
continuous partial derivative in X € (- 00, + o) and
for every X €(~00,+ 0 ) and almmst every t € G
( G 1s a measurable subset of Eg ) there 18 -N &
29, (x,t)€ M  for constants M,N, 0<M, N< + o0 .
2° A 1is & positive self-adjoint mapping from L, (G)
into itself and such that MIUAIl & 1 , 3°4g(x,t)xe
& axi+ (W) Ix1F o), (xet-m,+00), te G) , Where
D<a<2, £Mely(), cttle L,G)a<dnar’.

Then the equation
(14) x(8)- [K(s,t)g(x(@),t)dt =0
has at least one golution x* in L, (G) . Mareover, if

i < 2(1-alAl)
(15) 0< P < Min ((1+N IANY, ‘14-,2,;“:1-2@!“)’
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where N, = Max (M, N), & is the constant from
lemma 1, then the sequence {X,? , where X, Ai&vﬂ ’
=% - A -ATO AR ), (me0,1,2,...0, 0< B< 1,

R:, =0 , converges weakly in L,_(G) to any
solution of (14).

Proaf. We shall solve the equation

(16) x - At A¥x) =0,
where A% denotes a positive square root of A . Set
alx) = Ao alx), Fix)=x- Atoatx), P= o1,
where 1% gsatisfies (15). The mapping @ (x) is conti-
nuous from L, (G) into itself and for every X € LZCG)
has a linear bounded Gfteaux differential
DA (x,h)= G =AY (Al 0)ATh, mel,(6) -
Purthermore, (&/(x)h,h) = (g, (Alx,t )Atn, ATh) &
& M (AL )2dt & MIALLAI® & IAI2 .

Henc: (PF(X) A, ) & 0 for every x € L, (G)
and h e L, (G). Clearly, PF/(x) 1is a self-adjoint map-
ping in L, (G) We ghall apply Theorem 4, It is suffi-
clent to prove that the mapping ‘4r=('l—1ﬂ)l+19A%¢(A%)
maps some closed ball D={x€L,(G): I x| & [ into _
itself (72 1is a number satisfying (15)). If x€D ,then
GO & (1-Bpte 28(1-3) g Atk ¢)abc)ctt +
+ B2 AT (AT 1P

Aasuning 3°, we have that

4 02,
fq(A X, t)AIxt)dt £ a A" X" +

+/xr(t>|A*x(tn gt fetrdt &
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calAlp*+ o 1ATF T 0% 70 o,
% .,F
where & = ( [ 1&@)I7dt)?, ¢ = [ec, (£)dt.
G €

Since ¢ is a continuous mapping and ¢ :L,(G)~ L, &)
(11, § 20], then according to lemma 1
1AL D (AEx 1 IALIGCALIONZ & 1A (cy+ 2y I AZ 12)
£ NAl (cg+d; N1ANR2)
for every X € D . We can now infer that, for every
xeD, Iy (N & dp*+ 29 (1-8) L NATI . 270 o
where d = (1-#)4+28(1-B)allAll+ 131»&', A1l ,
¢, =28(1-)c+ B2 1Al ¢, . Because a<FIANT,
there 18 1-a lAll> 0, 1+4, IAI*-2a Al >0 .
According to (15) we obtain that d < 1 . Now, let
be a positive number such that d,pz+21$(’1-#)-6'":4i"2?;z-§-
+¢, < go" . Then (D) c D . Hence the equation (16)
has at least one solution .x’: in L, (@), and thus x*=
= Al.x;" 1s @ solution of (14) in L, (G) . The se-
cond part of our theorem is evident. This completes the
proaf.
Now we shall state a theorem concerning the solution of
Hammerstein equations of the first kind. Consider the equa-
tion

(7 Ap(x) =+,
where f is an arbitrary element from L, (G) (G is a
measurable subset of Eg ).

Theorem 9. Let the following conditions be fulfillegd:
1° A function ¢ (X, t)  measurable in t € G has a
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continuous partial derivative g, (x,t) in X €
€(-00,+00) and for every X € (00, + co) and almost eve-
ry teG thereisOéqfx(x,t)éM<+oo

(M 1s a constant)., 2% A linear continuous self-adjoint
mapping A maps LQ_CG) into iteelf end (Ax, x) =

2 milix? y (m > 0) holds for every xe L, (G) .

3° —1—9(3(, t)x 2 axt-L@®)x ¥ Let), (xe(-co+00), t e G),

where 0< 7 < 2,(t)el, (G); clt)e L (6),a>0.
Then the equation v
(18) SK(s,t)g(x (), t)dt =f(s)
&

has at least one solution x* in L, (G).

Remgrk. For some result concerning the solution of the
equations of the first kind see [11l, § 11]. For A one may
get in theorems of § 2 an integral operator with the Carle-
mann kernele '
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