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UNIVERSAL CATEGCRY WITH LIMITS (F FINITE DIAGRAMS
V&ra TRNKOVA, Praha

The main result of the present note is that there exists
a category Ul with limits of finite diagrams and such that
every category with limits of finite diagrams may be fully
embedded in 1 ; the embedding preserves these limits.

I. Preliminsrjieg. The present note is written in the
Bernays-Godel set-theory with the axiom of choice for clas-
ses, (1], The same notation and conventions as in [4] are
used; knowledge of [4) is assumed.

II. Let V be a normal property
a normal property x) of embeddings. The following metadefi-

x) of categories, W

nitions are analogous to those given in [4] for properties
of & -categories and L -embeddings X):
Metadefinitions: We shall say that W 1ig categorial if
a) every isofunctor onto has W;
b) the composition of two functors with W has W;
We shall say that W 4is monqtonically additiyve if every
union of monotone systems of embeddingn with W has W.
Let & bea small categary. We shall say that V is & -

x) i.e. given by a normal formula in the sense of [1)
xx) The metatheorem for 4 -categories given in (4] mst be
corrected: W has to be monotonically additives

- 447 -



inyariant if a) every category with V contains k as &
full subcategory, b) if a category R has V , ¢ is an
isofunctor of & onto £ which is identical on % , then
A has V.

We shall say that V is a ¢ with respect to W if
every amalgam ¢ £, X > with V such that the inclusion
functor (,: { — A& has W for every /e X has a
£i1ling K with V such that for every 4 € X the in-
clusion functor (% : & —> K has W.

We shall say that V has small W =character if a catego-
ry K has V 1if and only if K is the union of a monoto-
ne system $& joce€T} of small categories with V¥ such
that for any o < «’ the inclusion functor z,:l:/% - &,
has W.

III. Metatheorem: Let W be a categorial monotonically
additive property of embeddings. Let % be a small catego-
ry. Let V Dbe a .k -invariant property amalgamic with res-
pect to W and of small W -character. Then there exists a
category U with V such that every category with V nﬁy
be fully embedded in U . The embedding has W.

Proof if quite analogous to that given 1{1 [4] and there-
fore it is omitted.

IV. Definition. Let S; (or S; ) be a class of small
non-empty categories. We shall say that a categary K is

S: ~complete (or E: -complete) if every diagram in K
with schema from S,y (or S; ) has a direct limit (or an
inverse limit, respectively) in K . A categary which is
5:, -complete and ‘s-; =gomplete will be called (?,:,‘gi)-
complete.
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A functor which preserves direct (or universe) limits of all
diagrams with schema from S; (or S; ) will be called f—’:L"
preserving (or S; -preserving, respectively). A functor
which is SZ =-preserving and §; -preserving will be
callea ( 3':‘,3:-) =preserving. )

Definitiopn. Let S be a class of finite non-empty ca-
tegories containing all # for which card Hy @,&)$1 for
all a, L€ h”. Then S will be called suitable.

V. Let Sy , S; be suitable classes; we shall con-
sider the following properties:

- V4 48 the property of being g,_ -complete;

W; is the property of being 3_, -preserving;

V, 1is the property of being ( Sy,5,)-complete;

W, is the property of being ( 3; ,§__. ) ~preserving.
We shal verify that the properties V, , W, end Y, , W2
satisfy the assumptions of the metathearem, and thus obtain
the following results:
There exists an 3:, -complete category in which every S;- -
complete category may be fully embedded; the embedding is
§4 -preserving.
There exists a ( g:,‘g“ ) =complete category in which every
(—S;_,g; ) =complete category may be fully embedded; the em=
bedding is ( Sy, S;) -preserving. ‘

VI, It isevident that W, and W, are categorial
and monotonically additive. It is also evident that ¥, anda
Y, are ¢ =invariant, where @ denotes the empty cate-
80Ty ‘

VII. Now we prove that V, has small W, =-character
(m=12):
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a) Let {A&_; T} be a monotone system of small ca-

tegories (T is On -ordered by 4 ) with V, such that if
% < «’ then the inclusion functor (F: A& —> &, has W, .

Then evidently U/ &, has V, -

b) Let K be a category with V, . For every emall full
subcategory A of K choose some full small subcategory Y
of K with V, such that .4 is a full subcategory of A
and the inclusion functor Ly : A — K bas W, (this 1s
indeed possible). Let 2 be an On =-order for the class K;'
for every @ 6 K denote by A, the full subcategory of

K such that k= { e K7 &-¥al. Let £, be'a full
subcategory of K such that l:= /h: ul,yak,ﬁf, g = Z .
Then evidently the monotone system { .l ; @ € K”7 has the
required properties.

VIII. Now we prove that Y; is amalgamic with respect
to W, .

Copvention: Let ( £, X > be an amalgam. Then there ex~-
ists its filling K with the following property: if H is
a category, 4, ¢ A& — H functors ( .k €D such that

y*’/t - %’/z for every Jfe, 4&‘e X , then there exists

exactly one functor ¢: K—> H such that ¢, = (f - &
where () : & — K  is the inclusion functor. The filling
K will be called the sum of the amalgam < .£, X D .
Lenga 1: Let (£ , > be an amalgam, K its sum. Let
b, ke X, kit k0, KT, e &7 oy =s'y 1n K.

Then there exist objects X,,..., X of £ , morphisms

"
P13 ¥, ©f R , worphisms d,..., 0, of R  and

morphisms @,,..., @, , of £ such that:
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1) m ie odd, m & 3, p € Hy(x,,x,), p, e H, (x5, X, ), ...
...,;D,,b_, € H,t (X, , Xpoq);

2) =0 U=, dp=d, ¥ =19";

3) dye H (5, X0 ), W€ Hpy(Xp, ), 2= 1,2,000, M5

4) - =d; &y Pr=s,er hye Py = Oy in R;
V=@ Gy = Byeer Uy = Pay B in R

Proof: This follows immediately from the construction
of K ,I21. ]

Note: 1In the following lemmas 2 and 3 and their proofs
the notation from [3] will be used.

Legpa 2: Let (£, X' > be an amalgam with V , ena K
its sum. Let the inclusion functor (, : £ — & have W,
for every 4 € X . Then for every .k € X the inclusion
functor (f: k& — K has Wj -

Proof: Let £: J — & be a diagram in ke X, Je S;,
let <pn,{m 3 ©°€¢ J” 3>, be its inverse limit. We shall
prove that it is also an inverse limit of F¢f . ‘

A) Let < &54{vy, s i € J°?> be an inverse bound of?‘%*-
‘We show that there exists an f € H (&) such that
fm,=Y; forall i€ J7. If & € k", then this is evi-
dent. Let M € X, &'+ 4, brc £ - 4&° . Then there exists

PBi € A&'™, «; € W™ such that ¥; =/B; - «, . For every

6e Hy(i,4i’) set &=(6)F ; there is 3, - &)=/, -

6
e

of £ , morphisms 9;,.,., fr“‘ of /& , morphisms ofF,...

cery 0;‘; of A&’ and morphisms 5::,,. . go,,‘ 1 of £ such
that the statements 1) = 4) from lemma 1 are aatiafied, where
we replace by B; , ¥ bWy x;+6 , I’ by By, ¥ by

;s and supply the corresponding symbols with an index 6 .

4

- TV consequently we my choose objects X, , very K
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Let J be the following category: J” = AuB , where
Am{<X,,1>; i €07],B={<x],6,5);6€I™ 1<r<m}
(we will assume AU B=@ ); for 6 ¢ H,(i,4’) put

Hy (C%;, 4%, <XT, 6,25 = {KKK,,i>,9f, (x5, 6,257,
Hy ((X$,6,3%,<x7,6,2 %) = {Kx], 6,35, 95,¢xE, 6,25},
H,((&'wy),(.\gf‘__ﬂ 6, ma.-1>)-{«§:1"'),P:fn(xzf.1, 6, mg-1>>}
(whenever m, > 3 ; the modification of the description
for m, = 3 is evident); moreover, for every e?"' put
Hy (3,3 )~ {€; 3, where €, is the identity; in the re-
maining cases put H; (4,7°) =@ ; the composition in }X
need not be described because every morphism composes with
identity only. Evidently Y € S; . Let ¢L: X — £ be the
following diagram: let je€ J7; if j = (X; ,i)>, put
GIY = X; 5 1 G=<(x5,6, 5>, put (L)Y = X5 ;
for A €J™ either A= ¢; and then put (L)Y = Cyrep s
or A 1is a triple and then put (1)L = ©, where o 1is
the middle member of A . Let <g; {9 ; 5 € X"} be an
iverse limit of @ . If j=<X;,i>eFJ7, set Wy o= B
1t G =<KxJ, 6, 6D€ ), set % - o, . Then evident-
Iy <&, s 4 € 73> 1s an inverse bound of ¥ ¢, -
Since Y
such that §.9¢; =7 for all 7 ¢ J7. It is easily pro-
ved that <(q; {“rt‘,n' i3 7 € Y73)> 1is an inverse bound
of ¥, so that there exists an fe H, (g, 7t) with
?“"2 =?§,¢,”o ot; . Then, of course, (§-§)- 7 =~ §-

is ‘S_, ~preserving, there exists an § € H, (&;Q)

. ”d,4)“‘4 -0‘#’4». oy, = By -0k,

B) Let € and £’ be morphisms of K such that €./ =
=¢'.M for all i € Y’ We must prove that € = ', If
€ e k", then this 1s evident. Let &'s X . h+ R 4. Ec k7R’
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Then morphisms /3, 3'€ JK:W, oo, o’ k™ may be chosen

such that € =3 -k, €'= B’.x”, Simce B:ot: M =
=(3'-o’- o, ,we may choose objects xf,..., .x,";‘, of 4 » morph=
tems 2°,..., f,f‘. of A , morphisms o}%..., dy.. otk
and morphisms @,...,. gb,,:’, - of £ satisfying the state-
ments 1) - 4) from lemma 1, where we replace o by « -3,
«’ by «’-; and supply the corresponding symbols with an
index 7 . Let L be thefollowing category: J7 = A u B,
where A ={<%,1>,<%,2%],B={x},i,6>;1€T% 1< <m;}
(we will assume that A v B= @ ); for every i € J” put
Hy (K&, 13, <G, 4, 2= (K%, 15, 0, CxE, 4,200 505
Hy (& 20,0y~ V=& 20, @0 11 (g 5 B, 7= 1255
moreover put H;(st'»_é )={€;} for every F € F%; 4in the
remaining cases put Hy (7, 77) = @ . Let Y: YL be
the following diagram: . '
K& ANY =K, (X 2P =8", K, 4, AY=X;, (€)Y = 2oy 5
if A €™ 1is a triple, put (W)Y =p, where o is the mid-
dle member of A . Let Cas{ee; 5 7€ F73> be an in-
verse limit of Y ; set %% 45 =0, B 55 = 2’ . If
4:(3?,, 1>, put ¥; = B ; £ j=<%, 2>, put 2 =
=51t F = <.x:, i,4>€F”, put B¥; = L* . Then evi-
dently <&, 1% ;7 € 273> 1is an inverse bound of ¢, s
and therefore there exists an §e Hy (&, @) such that
§-2¢;= % farall 4 & X, nemely f-2e=43,§ 9 =/’
Evidently ae¢ . 7f= %’ . z,r,,‘: , leee 28 coLeoam; =o€’y
for all i , consequently 2¢ - ot = 8¢’- ’. Then B3+ oc =
= §-% k= .9 KX =B x. ‘

Legma 3: The property |, is amalgamic with respect to
W, .



Proof: Let (£, X > be an amalgam with V, such that
for every .k € X the inclusion functor (, : £ — &
has W, . Let K be the sunof {.£, X > . Then foar every
4 € X the inclusion functor 4..;'; : &> K has W, .
Using Theorem II.3 from [3], K may be fully embedded into
a small categary K with V, such that the inclusion func-
tor L : K— K has W, . Then K is the £illing of
{L,X> with the required properties.

IX, Now prove that V, is amalgamic with respect to W, .
Let (AL, X > be an analgam with V, such that, for every
4 € X , the inclusion functor (, : £ — 4 has W, .
Let K be the sup of (L, X ). Using VIII Lemma 2 and '
its dual, it is easy to see that for every .k € X the
inclusion functor Lj : & — K has W, . Then use theo~
rem II.5 from [3].

X. Note:One may combine the properties \4 N \A{, and
their duals and V3, W, with other properties, for example
with the property of being connected x) or of having a sin~
gleton. Thus for example the following results are also
true (cf. also the proofs of Theorems II.3 and II.5 from
[(P: Let S, , S; be suitable classes of categories. The-
re exists a connected g; ~complete category in which eve-
Ty connected ‘s‘, -complete category may be fully embedded;
the embedding is g; =preserving xx).

x) A catego;',y 4 is called comnected if for every @, &re &’
there existc,,..,c, ¢ &’ such that ¢ =a,c, =45 H, (¢, du
vHe (g% @ far 2 =1,2,..., m-1 .
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-
There exists a Eit -complete category with a singleton in
=5

which every fii -complete category with a singleton may be
fully embedded; the embedding preserves singletons and is

-

fit -preserving.

-
There exists an (éib1 54) ~complete category with a system
. - &
of null morphisms in which every ( S5, S; ) =-complete cate-
gory with a system of null morphisms may be fully embedded;
o~

the embedding preserves null morphisms and is ( Sy,S;)-pre-
serving.

XI. Note: The author was adviced by Z. Hedrlin that so-

me results given in [4] remain true if we replace the word

"get" by "finite set"™ and the word "class" by "countable

set" (also in the definition of categories). The results of

the present note depend not only on results and ideas of 4

but also on the embedding theorems of [3].

Nevertheless, the following proposition holds:

There exists a countable semi-lattice such that every count-

able semi-liattice is isomorphic with its sub-semi-lagttice.
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