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‘ 7, 3 (1966)

ON CONSERVATIVE UNIFORM SPACES
Jen HEJCMAN, Praha

D. Bushaw in his paper [1l] examined boundedness - con=
servative uniform .epaceo (see Definition 3 below). The
boundedness in the sense used in [1] has some disadvantages,
e.gs & finite set need not be bounded. In this paper we
deal with spaces conservative with respect to other proper=-
ties, namely to the boundedness in the sense of [2] which
is implied by total boundedness, and to accessibility (see
Definition 2) which is near to embedding into a comnected
set. The boundedness in the sense of [1] is our boundedness
together with accessibility. Such a point of view enables
snother proofs and & slight generalization of some results
of [1]. An attention is ako given to some relations between
uniformly local possessing properties and conservativity.

For uniform spaces, we use the terminology of [3]. IfV
1s = relation on aset S , we put V=V, V™o Vo V™7 and

V2« U V™. Let us begin with definitions.

nec1

Definition 1.[2] Let (S,U ) be a uniform space. A
set X c S is called bounded in (S,%U ) (shortly "voun-
ded”) if for each Ul in U there exists a finite subset K
of S and @ natural number M such that X c U™[K1.
Definition 2. Let ( S,2 ) be a uniform space. A set
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-X €S is called accessidle in (S U ) (shortly "acces-
sible") if for each L in % there exists a point X in
S such that X ¢ U¥[x1].

A set X which is accessible in the space (X, ) is
called chained.

Remgrkg. If X is a bounded resp. accessible set and
YecX , then the same holds for the sets X , Y . 1In the
above definitions we may suppose that Kc X or x € X
(¢ X+ 0 )o It XcTcS and X 1s bounded resp. ac-
cessible in the subspace T, then the same holds in the
space S,' the converse does not hold in general, but the
following proposition is valid.

Theorem 1. Let T be & dense subspace of a uniform
space S.If aset X c T 1a bounded resp. accessible
in S, it 1s also bounded resp. accessible in T .

Proof. For boundedness see 1.20 in [2]; the proof of
accessibility is quite similar,

Theorem 2. A set X is both bounded and accessibl in
a uniform space (S,U ) if and only if for each U in
QU there exist X in S and a natural m such that X
e U™Lx].

Progf. "If" is clear. If X c U™[ K] with a finite
KcX and X c¢ U®L[x] them clearly K c U™ [x] far
some natural . and hemce X c U™"™ [x] .

Thus we have shown that he sets bounded in the sense
of (1] are those which are both bounded and accessible.

Now we proceed to conservativity.
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Definition 3. [1) Let P be a property of subsets of a
upiform space (S ,U ). We say that an entourage U &€ U
is P -comserving if for each subset X of S having the
property P the set UL[X] has also the property P. If
there exists a P =conserving entourage, we say that the
uniform space (S, U) 18 P -conservative.

Recal; that a uniform space (S,"LL) is said to possess
a property P uniformly locally if there exists U in U
such that U[x] has the property P for each x in S.

Remark. Let P be any property possessed ty sll one-
point subsets of a uniform space (S, WU).1r UeU 1s

P =conserving then clearly lL[x] has the property P
for each x in S ; hence & P =-conservative uniform spa-
ce has the property P uniformly locally. The converse
does not hold in general. If W [x] is accessible for
each X in S then U 1s slso accessibility-conserving.
Now we shall show what is the situation with total boun-
dedness and boundedness.

Theorem 3. Let (S,WU ) be a uniform space, Lke U
and let U2[x) be totally bounded for each point x of S.
Then (L is total boundedness-conserving and each bounded
set is totally bounded. If a space is uniformly locally
totally bounded then it is total boundedness-conserving
and boundedness-conserving.

Proof. The first sssertion - see 1.17 and 1.18 in [2],
the second one is clear. . ‘

Example. Let S bg the set of all pairs(m,t) with
m positive integer amd -1 4t £ 1, Put
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@(n,t), (n,tN=t-t'| tor t40,ts0,
=-t+Vt for t <0<t (<D<t similarly),
=Vitti tor t20,t'2 0.

Now we identify all the pairs (m, ~1) and denote 8o ob-
tained element by q .If m % m’ we put

PlUn,t),(m,t'N=@la,(n,t)+pla,(n,t).
Clearly (S, ) 1s & metric space, the collection of all
sets V= €{,y)IP(X,94)< €} with positive £ .1. o
base of the uniformity induced by @ . Put A= €{(n,0)!|
Im=1,2,...1It is easy to prove that S is chained, A is
bounded (and hence also bounded in the sense of [ 1)) and
for easch X in S the set V; [x] is bounded; moreover
for each X in A this set is totally bounded. We shall
show that no Vg [A] is bounded. Suppose the contrary,
let 0 < <€ . As V, [Al 1s bounded and the space S
is chained, there exists a point X and a natural & such
that Y, [A) c V:fxl . But this implies that |, [Alc
c V,.“‘['yl for any point 74 of Y [Al. Choose s natu-
ral M, and a positive 4 8o that Vikod <Vs <¢ .
Bvidently (m,A)eV,[A), The inequality 24 o™ » im-
plies V;“[(ﬂn,/a)l c€{(m,t)It >0} which is a contra=
Qdiction.

Convention. In the following text, we shall use some
abbreviations. A denotes accessibility, B denotes boun-
dedness, T denctes total boundednegs. If P, R are two
properties, we denote by PR the property meaning that
dboth ihuc properties are possessed.

Recall that a family { X} of subsets of a uniform
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space (S,U) 1s called U -discrete (where Ll e U ) if
UIX IAX, =0 for any o 4 f3 ; 1t 1s called uniform-
ly discrete if it is Ll -discrete for some LL in 2 .

Theorep 4. Let P be a property possessed by all one-
point subsets of a uniform space ( S, ). Let a symmet~
ric Ve U bve AP -conserving. Then there exist S,
such that -

(x) S =U{S5: %, S are chained, {§ ¢ is V-discrete .
If (X) is fulfilled for some entourage V & % then V
1 A ~conserving.

Proof. If X € S then the sets V”[x] for all na-
tural m possess the property AP ; they have a common
point X and therefore V¥“[x] 1s accessible. If x~ 4
denotes x € V*[qy] then ~ is an equivalence on S
which defines a decomposition S = U{S }. Evidently this
family is V -discrete and therefore each S is chai-
ned. Let (k) be fulfilled. If X c S is accessible them
X ©S,. for one o« only; hence VL[X]c VIS, 1 = Sc
and V[ X] 4s also accessible.

gorollary. A uniform space is A -conservative if and
only if it is the union of a uniformly discrete family of
chained subsets.

Theorem 5. Let (S,% ) be a uniform space, L € 2.
Ir U is AB (resp. AT )-conserving it is also B
(resp. T )-eonui'ving.

' Proof. The entourage V= U n U?  is symmetric and
AB (resp. AT )-conserving. Take the decomposition ()
from Theorem 4. If X ¢ S 1is bounded (resp. totally



bounded), then the sets X = X A S_ are non-void for a
finite number of o«’s , denote them by ok,,...,, - The=
refore X = )(.‘,1 V. U x,,m , each set x,c_; is both boun-
ded (resp. totally bounded) and accessible. The same holds
for LL[X. ] and hence ULX)= LIX Ju...u ULX, 1 1s
bounded (resp. totally bounded). '

Regark. We have proved (Theorems 4,5) that AB -con-
serving symmetric entourages are exactly those which are
both A -conserving and B -conserving. Hence a space is
AB ~-conservative if and only if it is A -conservative
and B -conservative. For example, a bounded space is AB-
conservative if and only if it is A -conservative. .~

Using the corollary of Theorem 4, we obtain

Theorem 6. A bounded uniform space is A -conservati-
ve (= AR -comservative) if and only if it is.the union
of a uniformly discrete finite family of chained subsets.

Now we obtain the result of [1], Theorem 2:

Corollary. A totally bounded separated uniform space
is A ~conservative if and only if its completion has a fi-
nite number of components.

Eroof follows from these facts: (1) A compact set is
chained if and only if it is connected. (2) A family {X_ i
is uniformly discrete if and only if {X } is uniformly
discrete.

Recall that a uniform space (S ,U) 1s called nonar-
chimedean if 9 has & base each element of which is an

equivnlenée. Nonarchimedean AB -conservative spaces we-
re characterized in [1]. ’
P :
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Theorem 7. Let (S,7U ) be a nonarchimedean uniform
space. Then (1) Each bounded subset of S 1s totally
bounded. (2) If Ve 2% is A =conserving then it is
the smallest element of o . (3) If V 4s the smallest
element of % then it is A -conserving and B -conser-
ving.

Proof. If LLe U 1is an equivalence them U™ = U
for each natural m which proves (1). Let Ve % be
A -conserving., For each x in S the set V[x] 1s
accessible, therefore for any equivalence (. we have

VIixlc U¥[x]=ULLx] which proves (2)., Let V
be the smallest element of U . Then for each X in S
the VIXx] 41e accessible and therefore V is A -con=
serving. Moreover V2[x] is clearly bounded, hence
totally bounded, therefore V is T =conserving and al=-
so B =comserving.

Corollary. A separated nonarchimedean uniform space
(S,U) s A -conservative if and only if 2 is discrete.
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