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Comment at iones Mathematicae Universitatia Carolinae 

7, 3 (1966) 

ON CONSERVATIVE UNIFORM SPACES 

Jan HEJCMAN, Praha 

D* Bushaw in M s paper [1] examined boundedness - con­

servative uniform spaces (see Definition 3 below). The 

boundedness in the sense used in [l]has some disadvantage*, 

e*g* a finite set need not be bounded* In this paper we 

deal with spaces conservative with respect to other proper­

ties, namely to the boundedness in the sense of [ 2] which 

is implied by total boundedness, and to accessibility (see 

Definition 2) which is near to embedding into a connected 

set* The boundedness in the sense of til is our boundedness 

together with accessibility* Such a point of view enables 

another proofs and a. slight generalization of some results 

of [1]* An attention is alta> given to some relations between 

uniformly local possessing properties and conservativity. 

For uniform spaces* we use the terminology of £3]. If V 

is a relation on a set S f we put V1* V, V^m V<» V*mi and 

V4"* 0 V* . Let us begin with definitions* 

Definition 1*123 Let ( S ,1t ) be a uniform spaas, k 

set X c S is called bounded in ( S ,TL) (shortly "boun­

ded") if for each U in U there exists a finite subset K 

of 5 and a natural number m, auch that X c IT* C K ] . 

PtfAnlUPB ?• Let ( S , U ) ba a uniform space. A sat 
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X c S i s called accessible in (S,tO) (shortly "acces­

sible") i f for each U in % there exists a point :x in 

S such that X c U°* i X 3 . 

A aet X which la accessible in the apace f X , <2£<,) i s 

called chained. 

Remarks. If X is a bounded reap, accessible set and 

V c X ; then the same holds for the sets X , Y . In tha 

above definitions we may suppose that K c X or x e X 

( i f X #= 0 ) . If X c T c S and X i s bounded resp. ac-

cessible in the subspace T , then the same holda in the 

space S ; the converse does not hold in general, but the 

following proposition is valid. 

The pram 1. Let T be a dense subspace of a uniform 

space S . If a aet X c. T i s bounded reap, accessible 

in 5 , i t is also bounded resp. accessible in T -

£££££. For boundedneaa see 1.2o in [2]; the proof of 

accessibil ity ia quite similar. 

Theorem 2. A aet X i s both bounded and acceesibk in 

a uniform apace ( S , 16 ) i f and only i f for each U in 

% there exist x in S and a natural m, such that X c 

c U^CxJ . 

Proof. "If" i s clear. If X c l i n [ K ) with a f in i te 

K c X and X c U " U 1 then clearly K c U7*lxl for 

soma natural /m, and hemes X c LL/n"t"tn' Lxl • 

Thus we have shown that the sets bounded in tha sense 

of [ l l are those whieh are both bounded and acceaaible. 

Now we proceed to conaervativity. 
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Pef ln,iU9B 3» HI Let P be a property of subsets of a 

uniform space (S 7%\ We say that an entourage LL e 01 

Is P -conserving i f for each subset X of 5 having the 

property P the set UCX] has also the property P . If 

there exists a P -conserving entourage, we say that the 

uniform space ( S ,%) i s P-conservative. 

Recall that a uniform space f S , 4 l ) i s said to possess 

a property P uniformly locally i f there exists LL in U 

such that l i t * ] has the property P for each *x in S . 

Remark. Let P be any property possessed by i l l one-

point subsets of a uniform space CS ;
f Lt) , l f LlelL i s 

P -conserving then clearly ILLxl has the property P 

for each x in S ; hence m P -conservative uniform spa­

ce has the property P uniformly locally. The converse 

does not hold in general. If U £ x 3 i s accessible for 

each X in S then LL i s also accessibility-conserving* 

Now we shall show what i s the situation with total boun-

dedness and boundedness. 

Theorem 3 . Let ( S ,16 ) be a uniform space, Li € 01 

and let U2Cx3 be total ly bounded for each point x of S . 

Then Li i s total boundedness-conservlng and each bounded 

set i s total ly bounded. If a space i s uniformly locally 

total ly bounded then i t i s total boundedness-conserving 

and boundedness-conserving. 

Proof. The f irs t assertion - see 1.17 and 1.18 in [2 j , 

the second one i s clear. 

Example. Let S be the set of a l l pairs f /rt , t) with 

/7t positive integer and - 1 £ t « 1 . Put 
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p(Cu,t),On,,tO)-*lt-t'l t**t*0,if*Of 

«-t+-t/lF for t < 0 < t' ( i<0< t aimilarly), 
•Vlt-t' l t*Tt*0,t'k 0 . 

Now we identify a l l the pa ire (/rv, - 1 ) and denote eo ob­

tained element by a,. If ftt -fc mf we put 
p ((TV , i ), C/n/, t')) - J P ^ , Oi,,t )) + $>(<*,, (m?91')) -

piearly (S,p) ia a metric epace, the collection of a l l 

ee.ta Ve - % {(*,ty,) \p(x^)< e } with pooitivo £ . i . o 

base of the uniformity induced by p . Put A « ^{(m^O) I 

|TI«-1, 2 , - J . I t ia eaey to prove that 5 ie chained, A ie 

bounded (and hence aleo bounded in the eenee of £1]) and 

for each x in S the aet Vi Ixl ie bounded; moreover 

for eaoh x in A thio eet ie total ly bounded. We ahall 

ohow that no Vt L A ] ia bounded. Suppoee the contrary, 

lat 0 < cf< e . Ae Ve LAI ie bounded and the apace S 

ia chained, there exiete m point X and a natural At euch 

that Vs t A3 c V$ Lx] .. But thie implies that Ve LAlc 

c V^ L<y] tor any point nf at l£ £ A3 . Choose a natu­

ral tfrt.and a poaitive * eo that VlM CT < VZ < e -

ividently (an,, fi>) e Vt LA] . The ineo:uality 1 JkcT"1* /s> im-

pliee Vjl*L(<m,,A>)]c<l {(<m,,t)11 > 0} which ie a contra­

diction* 

Convention. In the following text, we ahall uoe some 

abbreviationa. A denotes accessibil ity, B denotes boun-

dedneee, T denotee total bound edneje. If P, R are two 

propertiea, we denote by PR the property meaning that 

both theee propertiee era poaaeeaed* 

Recall that a family { X& | of subsets of a uniform 
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space (S,U) i s called U -discrete (where U e U ) i f 

U 1X^1 r\ X^ * 0 for any oc + /& $ i t la called uniform­

l y discrete i f i t i s Li -discrete for some 11 in U # 

Theorem 4. Let P be a property possessed by a l l one-

point subsets of a uniform apace ( S ,U) . Let a symmet­

ric V € tyL be AP -conserving. Then there exist S„c 

such that 

(* ) S • U{ S* i., Su are chained, i^ I i* V-di*erete -

If <*) i s fulf i l led for some entourage V € U then 1/' 

i s A -conserving* 

Proof,, If X € S then the sets V*Lxl for a l l na­

tural ffi possess the property A P \ they have a common 

point *x and therefore V"Lxl i s accessible* If x~ nj. 

denotes x € V^tyl then <*> i s an equivalence on 5 

which defines a decomposition 5 • U { ^ } • Evidently this 

family la V -discrete and therefore each SK i s chai­

ned* Let (<#•) be fulf i l led* If X c £ i s accessible then 

X c S^ for one oc only; hence VCXJ c KCS^) * S*, 

and V [ X J i s also accessible* 

Corollary* A uniform space i s A -conservative i f and 

only i f i t i s the union of a uniformly discrete family of 

chained subsets* 

Theorem 5* Let ( S ,U ) be a uniform space, LL € U . 

If (i i s .4B (reap* AT )-conserving i t i s also S 

(resp* T )-conoerving* 

E£2fi£* The entourage ^ • ti n U"1 i s symmetric and 

AH (resp* AT )-cooserving* Take the decomposition ( * ) 

from Theorem 4. If X c S i s bounded (resp* tota l ly 
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bounded), then the aeta ^ - X r i S ^ are non-void for a 

f in i te number of oc^s , denote them by oc^,.-.,oc^.The­

refore X « K^M u ... u X*^ , each aet X„, . ia both boun-

ded (reap, total ly bounded) and accessible* The same holds 

for UCX^J and hence UtX3» LI [ ^ Ju,..u UCX^-I ia 

bounded (reap* totally bounded)• 

Remark. We have proved (Theorems 4,5) that AB -con­

serving symmetric entourages are exactly those which are 

both A -conserving and B -conserving. Hence a space ia 

AB -conservative i f and only i f i t la A -conservative 

and & -conservative. For example, a bounded space ia A&-

conaervative If and only i f i t i s A -conservative* 

Using the corollary of Theorem 4, we obtain 

Theorem 6. A bounded uniform space ia A -conservati­

ve (* Ab -conservative) i f and only i f i t is .the union 

of a uniformly discrete f in i te family of chained subsets. 

Now we obtain the result of [ 1 ] , Theorem 2: 

Corollary. A totally bounded separated uniform space 

ia A -conservative if and only i f i t s completion has a f i ­

nite number of componenta* x 

frooff follows from these facta; ( l ) A compact set ia 

chained i f and only i f i t la connected. (2) A family {XK\ 

la uniformly discrete i f and only i f {X^ ? ia uniformly 

discrete* 

Recall that a uniform apace (S9%) i s called nonar-

chimedean i f % has m baae each element of which i s an 

equivalence* Nonarohimedean AB -conservative apacea we-
0 

re characterized in [1]. 
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Theorem 7. Let (S^ll) be a nonar chime dean uniform 

apace. Then ( l ) Each bounded subset of S la totally 

bounded. (2) If V e 11 ia A -conserving then i t i s 

the smallest element of U . (3) If V ia the smallest 

element of U then i t la A -conserving and 5 -conser­

ving. 

Proof. If U e 16 ia an equivalence then IT* * U 

tor each natural m, which provea (1) . Let V e 11 be 

A -conserving. For eaeh x in S the aet VLxl la 

accessible, therefore for any equivalence (i we have 

Vtxl c U"lxl * l i t * ] which provea (2) . Let V 

be the smallest element of U . Then for each x in S 

the VL ** J la accessible and therefore V ia A -con-

eerving. Moreover V1Lxl la clearly bounded, hence 

total ly bounded, therefore V la T -conserving and al ­

so B -coneerving. 

Corollary. A separated nonarchimedean uniform apaee 

(SfH) ! • A -ooneervative i f and only i f U la diacrete. 
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