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AN UNDECIDABLE THEOREM CONCERNING FULL EMBEDDINGS INTO
CATEGORIES OF ALGEBRAS
Z. HEDRLIN and P. VOPENKA, Praha

Similarly as in [3], a category which is isomorphic
with a full subcategory of algebras is called boundable.
In (4] J.R. Isbell raised a question to find a concrete
category which is not boundable. The aim of the present
note is to show that the boundability of a category de-
pends on the used set theory. The category, given Qa an
example, is the category of sets with inclusions. It is
not boundable in a (rather odd) set theory and boundable
in a usual one, in which the last result implies e.g. the
following thearem: to any set A there exists a grupoid
(graph, topological space, resp.) G(A) such that A C
c B 1is equivalent with the existence of exactly one ho-
momorphism (graph-homomorphism, local homeomorphism, resp.)
from G (A) into G(B) amd if A & B, then it does not
exist, Z

In any set theory, the inclusions as 'norphinu and
sets as objects form a category, which we designate by 77:.
By a concrete categary we mean any category, which is iso-
morphic with a suboategory of sets and their mappings 7.
Svidently, 77 is & concrete category. It turns out that
the boundability of 77 depends substantially on the
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follewing axiom:
(V) There is one-to-one mapping F of the universal
class V onto the class of all ordinals U, -
We shall work in the set theory . , i.e. in the Gidel-
Bernays set theory with the axioms of groups A ,B,C amd
the axiom of choice E .We shall need also the following
axiom:
(M) There is & cardinal 0" such that two valued o=
additive measures on any set is Y -additive for
any cardinal 7~ .
The main result of this note may be described by two
theorems:
Theorem l.-In the set theory Zo*+ (V)+(M), 7; is
boundable.
Theoren 2. In the set theory 3 )+ (mon V), 7} is
not boundable. -
It is easy to see that, if Z,* is consistent, S *+
+(M)+(V) is consistent. Really, it follows from the con-
sistency of Zf that 3 * ( =* denotes Z:‘+ the axi-
om of regularity D ) is consistent. The axiom (V) is pro-
vable in = * ., Denote by (I) the following axiom:
(I) There exists an inaccessible cardinal.
Then, if S* is consistent, = *+ (M) is consistent,
8 e.g. _53* consistent implies = *+ (7on I) is com-
Qiatent, and in the last theory (M) is provable even for
I =g, . ;
r Zf + (I) 1s consistent, then Z:+(mm V)
is consistent. Really, in the set theory = * + (1) it



ie possible to construct a model of X + (mon V).
Thus, we may derive the following corollary:
Corollary. If (I) ie undecidable in ¥ then the

assertion " 7% is boundable" is undecidable in = ¥ .
To prove theorem 1, we use a result of [3] and the

construction defined in [1]. The idea of the proof of theo-

rem 2 is very simple.

Proof of theoreg 1.

Denote by ¥ the following category: the objects
are all non-limit ordinals, o, o > 1. On every object -
we remark that, by definition, an ordinal ot 1is the set
of all ordinals, 2, 3 <o =~ there is exactly one
morphism, namely the identity transformation of ov , and
there are no other morphisms in ¢ .

Lepma 1. Assuming (M), ¥° is a boundable category.
Hence, €/ 1s isomorphic with a full subcategory of 7
(for definition see [2]1 or [31).

Proof. We shall show that ¢ is a full subcategory
of UP{2§), (1,{13))  aefined in[3].

Really, in [3] it has been proved that the categary
7)) = the trivial categary of ordinals - is a full subca-
tegory of ?(P7,{2}) by introduction of a binary re-
lation # on P~ («x), o an arbitrary ordinal. If o
is a non-limit ordinal, define on P~(cc) the binary re-
lation £ , and a unary relation on oo "to be the grea-
test element of < " . If «, /3 are nom-limit ordinals,
ff . — 3, then P~(£) 1is compatible with the rela-
tions # if and only if o € /32 and  is a natural



inclusion, Now, £: o — 3 4s & morphism in 9" ((P7,{2})
(1,4131)) , 4if endonlyif a £ 3, f is a natural
- inclusion and the last element in o¢ is sent by £ into
the last element of 43 . Hence, o = [ ., By [3],
P(P;{23) (1,{1})) 1is boundable, and by [2], ¥ can
be fully embedded into # .
Definition of disjolnt oum of sets apd relations. Let
K be a class of ordinals. Par every o € K, let X,
be a set, R, a binary relationon X, . If A 1is a set,
A e K, we define a set D X, (a aisjoint union)
by: ‘
d‘DAX“= {(x,xc)lce A, Xxe X} >
and a binary relstion D R, om D X by:
(Cx, %), (4,86 DR, = x=f, (X,y)€R,
We designate by K, the class of all non-limit ordinals
®, x >1.
Leona 2. There exists a class of couples { X, R, X
s set, R, & binary relationon X., o € K, , with
the following property:

ir A, Bc K, are sets, f :‘PAX_‘-yﬁZPBXI, such

that

1) €x,&), (4,2 Ne D R, = (f((x,oc)),¥(Cy,w')))eﬁgakﬁ,
then Ac B ana #((x,x))=(X,ax) for every

(Xye) 6¢?A X«

Proof. By lemma 1, ¢ 1is isomorphic with a full sub-
categaxry of A . It means that, with every o € K,,we
may -associate a set Y and a binary relation S, on )Z;
such that iz «, B€K,, £: % — V), which 1s
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' § S, -compatible, then oc = 4 and f 1is the idemtity
transformation. We remark that these sets and relations
need not fulfil the condition of lemma 2.

If R is a binary relation on a get X ’, we define a
relation R on X by: (x,x') € R if and only if one
of the following conditions holds: x = x‘, (X, x’) € R,
(x’yx)e R. A couple (X, X’) 4s called to belong to
the same component according to R - we write (x,x’) e
€ C(R) - if there exists a finite sequence X, X,j---y Xy,
such that X =X,, X'z X, , (X;,X;, )€ R foris 1,2,00ym=1.
The relation C ( ls) is an equivalence relation and their
equivalence classes are called components of R . Evident-
ly, every compatible mapping sends each component imto a
component, A relation R on X 1is called connected, if the-
re is only one equivalence class according to C( é), na-
mely X .

Obgerve, that if all relations S, on %,
are connected, then they fulfil the condition of lemma 2.
Really, by definition of D S, (x,«) and (%,3) cannot

x € K, ,

be in the relation C (D, S) for « 4 /4. Hence, the

components according to D, S  are exactly the sets

{(x,%) ]| & fixed, X arbitrary in ¥ 3}. By defini-
tion, the relation ‘PA S, restricted to the component of

D, S« defined by o 1s isomorphic with the relation S
on % . Now, let f fulfil the implication (1) of the,

lemma, Then f must map every component of ‘]‘J A>gc accor=-

ding to D & into a component of pl‘)b%, according to
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‘;D’s . As the components are isomorphic with (% , Sc),

we get ihat, for every « € A, there is B < B such
that the restyiction of “PA S, onto a component defi-

ned by oc - say f - = is a mapping from Y into
which is S S, -compatible. But it is possible if and
only if o = 3 end f, is the identity. Hence, lemma

2 would be proved, if all the relations 3, om ), are com-
nected. But, generally,'the relations need not be connec-
ted., It is the reason, why we use the comstruction from
(1], which will change all the relations into comnected
ones, leaving them all the useful properties.

If S 18 a relation on a set Y, , we define &
set X  and a relation R_on X, by the construction in
(1] putting X = %, € =1, R, = S (this 1s the
Teason why we have assumed o« € K, implies o< > 1 ),
t,=2, Xy =X,, R, = R, . Using the same method
@s.1n [1]it is easy to prove that f: X — Xyr e, B€K,,
is e R Rﬁ ~compatible mapping if and only if o =,/ and
£ 48 the identity. Moreover, by definition, it is evi-
dent that every R, , o« € K,,is a connected relation.
Hénce, the relations R, on X, fulfil the requirements
of lemma 2.

Now, we can complete the proof of theorem 1.

Let F Dbe a one-to-one mapping of the universal class
V inmto the class of all non-limit ordinals K, , « € K,
implies oc > 1 . Hence, for any set X , we get an ordi-
el o = F(X), x € K, . Put G(X)w Xppyyp HX)= R_ ) 5
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where X and R_ have the properties from lemma 2. Now,
if Y 1is a set, put

= ¢ = (X
S = D EX), RV =D HEX

(if we consider only non-void sets, the void set in the
union may be omitted). It follows from lemma 2, that, if
Y, and ¥, are sets, then there exists a R(Y, )R (%)~
compatible mapping from S(Y,) dinto S (Y ) if and omly
if % € % , which is then the natural inclusion of
S(Y,) into S(Y% ). We have constructed a full embed-
ding of 77 into X . It has been proved in [2], that

7R can be fully embedded into the category of algebras
with e.g8. two umary operations. The proof of theorem 1 is

completed.
Proof of theorem 2. First, we shall prove a lemma.
Lepma 3. In the set theory =¥ , any class of mu-

tually non-isomorphic algebras of an arbitrary fixed type
can be mpped by a one~to-one mapping into the class of
all ordinsls O, -
Proof. Let A be the type of the algebras. As any al-

gebre is isomorphic with an algebra defined on a cardinal
ol , we may consider only algebras defined on cardinals.
If « is s cardinal, then there is only a set M(oc) of
algebras of the type A defined on o  If o * 3 »
then M(x)nA M(pB) = J . Dencte by S, the set of
all well orderings of M, , S = US, , where the sum
is ‘;okon over cardinals. By the axiom of choice, there ex-
ists a function AS associating with every cardinsl o
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a well ordering K(oc) of the set M(ot), Put M= UM,.
If €M there is exactly one cardinal o such that 4 €
€ M(a) . We designate this cardinel by 4 (o) . Fow, de-
fine on M @ lexicographical ordering < by:

X<y, X, €M 1if and only if x(x) < y(x) or
x(a)mgy()=o apd X <y im the ordering K (o) .
The ordering < is evidently a well ordering, and, for
every X , the class of all 4, 4 < X ,is a set. Hence,
the c¢lass M can be mapped by a one-to-ome mapping into
0, + The lemma follows.

Lemma 3 ensbles us to eonclude the proof of the theorem 2.
Consider the class of all one-element sets Z . There is
one-to-one mapping G of the universal class V onto Z ,
namely G (X) = {X}, for every X & V . By assumption,

" there 1s no one-to-one mapping of V into O, .

If 77 1s boundable, then for any one point set {X{ we get
an algetrs A(X) of a fixed type & . If X,Y are
eets, X+VY, then{Xj & {Y} and {¥Y] ¢ {X7?. There~
fore A(X) and A(Y)mustwot be isomorphic. By lemma 3,
shy class of non=isomorphic algebras of a given type may
be mapped by one-to-one mapping into (), . Hence, Z can
be mepped by a one~to-one mapping into (), - a contradic-
tion. The proof of theored 2 is finished.

Bemsrk. If @ and X  are subcategories of the ca-
tegory of sete and mappings 7', F: @R —> ¥ & functor
which maps @ onto a full subeategory of ¥, ¥ is cal-
led limited, if for every cabdinal o , there is a cardi-
nal 8 such that casd X = oc implies card F(X) & 8 -



Evidently, 7] may be considered as a subcategory of 7°.

On the other hand, it is easy to see that 77, cannot be
fully embedded into R by & limited functor. Thus, the

functor which maps 7, onto a full subcategory of 72 in
the set theory =+ (V)+ (M) 1is an example of a func-
tor which is not limited.

(1]

[2]

(3]

[4]

Reference 8

Z. HEDRLfN, A. PULTR: Relations (Graphs) with given
finitely generated semigroups, Monatshef-
te fur Mathematik, -68(1964),213-217,

Z. HEDRLIN, A. PULTR: On full embeddings of catego-
ries of algebras, to appear in the Illinois
Journal of llathematics.‘

Z. HEDRLfN, A. PULTR: On categorial embeddings of to-
pological structures into algetraic, Com=
ment.Math.Univ .Carolinae,7,3(1966),377=400.

J.R, ISBELL: Subobjects, adequacy, completeness and
categories of algebras, Rozprawy matematyc-
zne XXXVI, Warszawa 1964.

(Received May 23,1966)

- 409 =



		webmaster@dml.cz
	2012-04-27T16:37:59+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




