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JIIN SYSTEMS AND CLOSURE SPACES
Véclav HAVEL, Brno

The purpose of the present paper is to prove that some
join systems can be interpreted as closure spaces satisfying
the axioms(1)-(5) (cf.Definition 1), and cox‘lveraely.

In [2], K. Tul{k showed that closure spaces satisfying
(1)-(6) (cf. Definition 1) are models of Hilbert incidence

spaces, and conversely.

Definition 1. (1 A (general) glosure space is a coup=~
le {S,el > where S is a set and ¢/ is a map of #(S)
(set of all subsets in S ) into P(S).If (S, ) is a
closure space, then a) the sets A € Z(S), w\d.ﬂd will be
called pointg, b) the sets ¢f (A u JB), where £,5B are
distimt points, will be called lines and c) the sets
(R 0B u€), where A,B,€ are distinct points with
€ ¢ c€(R uT3) will be called planeg. If (S ,ef > is a

closure space, then one may formulate the following condi-
tions:

1) R eclh rax Ae f(S),
Q) AsB=bcl A s B for A, Be RS,

e e e e

(1) cf. (2], p. 83 and p. 85, respectively.
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DNel(elbA) =clA tor Ae A(S),
(@) A=el A tor Ae P(S) with ecand A =0, card B =1,

respectively,

(5) AsB=>AT3 if./i,.@ are both points, lines and

planes, respectively,

(6) if a point is contained in two planes then a line is
contained in these planes; there is a point and a plane
which are disjoint.

Definition 2. A join-gystem is a couple {S,+ ) where
S isa set, all subsets of which consisting of exactly one
element are called the pojmig, certain subsets of S consis-
ting of at least two elements are called lineg, and the va-
‘lidity of two following axioms issipposed:

(7) if A, B are distinct points, then there is precisely
one line (denoted by A + B ) containing both A, B,

(8) if a,,,@ are distinct lines thencavd (and) is 0 or1.
I (5, + ) is a join system then we shall denote subsets in
S by letters, points by upper-case and by lower-case letters.

Proposition 1. Any join system < S ,+ ) satisfies the
following conditions:

(99 A+B=B+A far A+ B, .
(10) A B+ ChD,A+B=C+D =2A+B=B+_,
(11) A+ B, A*=C, A+B+ A+C =>(A+BIN(A+C)=A.
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In the definition of a join system one may replace eqQuiva-
lently (8) by (10).

Proof. Obviously (7) ==» (9), - Next, (7) and (8) imp-
1y (10) since for A+ B+C =D, A+B = C+D+B+(, it
follows (C +D)n(C+B)=C and (A+B)Nn(C+B)=C.
Thus B+ C 1lie simultaneously on A +B andC+B+ A+
+B, contrary to (8). - Let (7) and (10) be fulfilled, and
suppose that points P4 @ are contained simultaneously in
a line @ and in a line & #+ a. By (4),a=P+6 and
Ar=P+6 contrary to the hypothesis @ = 4. Thus (8)
holds. = Finally, (7) and (8) => (11).

Proposition 2. Let{ S,+ > be a couple such that S
is a set and + a commutative compositionon P(S) satis-

fying the following conditions

(12) A +f=A ra Ae R(S),

13) A+ A=A for A€ R(S), card A=1,
) A+B=U) (A+B) tor R, Be RIN{L],

rY ]
GJA'M}II R

(15) Ag A +B for A, Be P(S),

(16) if A+C s A+ B for A, B,Ce P(S) with
cvd A= carnd B= cawdCeq ,then A+ B = A+C . ()

. e e o

(2) The multigroups defined in [1] are a epeciai case of
systems { S, +) satisfying (12) to (16) ,
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Let & be the restriction of + to all pairs (A', B)
with A,Be R(5), cavd A= cardB=4, A+ B. Then{ S, )
is a join system. Conversely, if { .S, + > is a join sys-
tem, then there is & unique extension $ of + toall

pairs (A ,7) with A, B e R(S), such that (S, +>
satiasfies (12) to (16).

Progf. Let there be given a system (S, +) satisfy-

ing (12) to (16). Define the lines as all subsets A+Bs S
with A,Be P(S), eandA=cand B=1, A+ B. Then (15)

~> (7) and (16) = (8), so that { S, &> 1is a join sys~

tem. - Conversely, let { S,+ ) be a join system. Here, +

is defined only for pairs (A, B), A+ B, Define A+A=

-7A for all A, A + 4 = A for all A e R(S) »nd

.R,+13-;‘§‘.{¢(A+B)for A, Be P(SIN{f} - Then
pshH
(1) - As A+ B

to (11) imply (16).

) and by (14) it follows that (15)

Remark. Oiven any Jjoin system S + ), we shall deno-
te by + also the extended composition, in the sense of
Proposition 3.

Broposition 3. In any join system {S,+) the follo-
wing conditions are fulfillead:

an 4 =3, CEDdA+eL=B+D,
(18) .ﬂ+.ﬂ..ﬁ_.,$s./2—>.ﬂ+;fac.ﬂ,
19) A+ A~A, BSAR, CSA=BrECs A,

v
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(200 CA+B)+(A+B)=A+8B,
(21) A+ BSC+D,A*B=>A+B=C+D,

(22) if (ﬁa’)ﬁf’ 1s & fanily of subsets in S, then A, +
*ﬂg«:‘ﬂ?" for all e " implieeﬂQAa, +£ A, =
= n Aa& ?

Per
(23) As B=> A= B.

Broof. (17) follows from the definition of the sum of two
subsets in S o - (18): The assumptions imply A +B & A
(by(17)F, so that R +J3 = A by (9). -

(19): (17) == (19). = (20): By (15), we have A + B s (A+B)+
+(A+B).Each element of (A+B)+(A+B) belongs to some (+
+D with C€eA+B, De A+ B , sothat by (17), C+
+D s A+B. - (21): The assumptions imply C + D, and
from (16) there follows C+ D= C+ A =A+B,~- (22): By
(15), TQ' Ay ETQA’. +rf¢')' Ay , and the assumptions

a1so yield 1Q.Ar +TC)A’. 5/3 Ap. =

(23) 1s trivial.

Definition 3. Let (S, + Y be a join system. Then
Ae R(S) 1s said to be glosed if A +.A = A, Define a
closure map ¢f s R(S)-> R(CS) in such a manner that,
for any e NCS), ¢ A  is the intersection of
all closed subsets in S which contain J2 . The planes

o (S ,cf) (pefinition 1) will also be called the planes
o {S,+>.
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~Reoposition 4. Let (S ,+> be a join system and ¢S,
¢l ) the closure space constructed in Definition 3. Then
cé A 1s closed for all A2 € # (S ) . Furthernmore,
conditions (1) to (4) are satisfied, and

(24) A+B<s ¢ for any A,B contained in a plane €.

Proof. From ¢f A «_ [ B , it follows by (22)

BaA
B+Be
t , = £ -
hat e¢f ‘ﬂ’xgc B "'5Q¢ B (1) follows from the defi

B+R=T B+ =3
nition of closure maps (Definition 3). - (2): If A& = 3,
then A & ¢/ 73 and ¢£J3 is closed, so that, by the
definition of ¢l A, ¢l AR =cf J3. -(22) =» (3). - (12)
and (13) == (4), - (24) is evident. ' ’

Proposition 5. Let {S,+> be a join system satisfying

(25) R B =» A=7 1if A ,B are plmes.

Then the corresponding closure space { S ,ef > (constructed
in Definition 3) satisfies (1) to (5). - Conversely, if a
given closure space {S,¢/ ) satisfies (1) to (5), then the-
re is & jJoin structure (S, + >, the lines of which are pre-
eisely the lines of S ,ef > determined according to Defi-
nitionl. This join structure { S ,+ > satisfies (25), -
Let { S, ¢f) be a closure space satisfying (1) to (5),
{S,+) a join system constructed to S ,cf)> as above and
s, e  the closure space corresponding to S, + ). Then
e = cl* .
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Proof, The first part only repeats the matter of Pro-
position 4 (note that (5) consists of (21),(23) and (25)).
In the second part, (7) and (8) follow easily ifi the compo=
sition + is defined by A+B = ¢l (AU B) far
A, Be R(S), caxcl Amoarcdl Bw1, A% B in a given
closure system { S, ¢/ ) satisfying (1) to (5). - The
rest of Proposition 5 is verified easily, using the defini-
tions of the systems (S5,+> ama ¢ §,-c&*).
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