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A CONTRIBUTION TO THE SUCCESSIVE OVER-RELAXATION METHOD
Emil HUMHAL, Prsha

1, Introduction. Given a system of linear algebraic equa=
tions
(1) Ax = &

arising from a finite difference treatment of elliptic par—
tial differential equations it is often recommended to use
the relaxation method for finding its solution. Successive
approximations are calculated according to the following

linear recurrence formula:

(2) Xpyo =L, x, + & (m = 0,1, 2,...)

(notation in accordance with [1]) where {~, X, are vec-
tors and the matrix &, is.obtained from A according to
formula (7) of section 2, 'and depends on a real parameter

w e (0,2),The convergence of the iteration process ob-

viously depends on the value of the spectral radiuso( &s)
of &,,. If A fulfils conditions (4) of section 2, then the-
re exists a unique &g in the interval (0,2 ) for which

o)

@ (Xy) attains its minimum.
Fige 1 shows the dependence of /4
@ (£,) on w. The left deri-

vative with respect to @ at

o)y 18 - co.For w >ay the
spectral radius @ (£, )= @ - 1.
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Therefore it is often recommended to choose &) > @y, - Be-
cause the actual error lx -x A= H57 (x - X, )0 is
not known in carrying out a numerical calculation (the exact
solution has been denoted by X ), we shall procred in the
following manner: choose a smal real € > 0 and an ini-
tial approximation ) and construct a sequence of vectors
X, until Ix, = - X, 0 < & . The vector X, is then
taken as the approximate solution. In this case lx . -
= R = NS (%, = X0

Let us choose an initial vector 4 and observe the be-
havior of the number € iterations necessary to achieve

s, fy.lka,when varying @ .

S ¢ _properti f the gucgcessi verrelaxgt
gperator.

Let there be given a matrix of the form

(3) A=D(I-U-L);

here A 1is an mXxn matrix, ] is the unit matrix, D is a
diagonal matrix and L and U are strictly lower and upper
triangular matrixes respectively. Let A have the following
properties:
a) A 1is irreducible;
(4) b) A is diagonally dominant with positive diagonal
terms;
¢) A is consistently ordered and has the property
(A) as defined in [ 2].
The matrix
(5) B=L+U



is then weakly cyclic of index 2. Let B have the follo-
wing properties:
a) all eigenvalues of B are real (this is trwe e.g,

for A symmetric)

(6) b) Its positive eigenvalues (g, g ,..., (%, (coun=
ted with regard to their multiplicity) satisfy 1;
SHy >, B My B ... B (4 >0 .

The matrix e“fw is constructed as follows:

(7 £, = I-wl)>(wUu+1-w)l1),

and has the following eigenvalues: N

Wy, +Var 1 - 4(w-1)y2
Ay, g @= { 7 8o

(8) = Yot i - -1),2
A, @) = { WL, cuzcw-. (@ 4)} ,

1’1 = 170-', /‘a

A'2.414-'1 ()= A'Zﬂa-o-z(“")"'-o =2n(w)-’l-a).
Let
(9) o, = 2
g 1 "'0'1-(“? :
Then

(10) 11(‘07”'7‘1:(‘")'7 1=2,...,m for we(0,a,),

I, @)= w-1, L=1,...m sor welay,2).
From (4) and (6) it follows that A, (@) 1is a simple ei- ‘
genvalue for @we (0, wg ) v (a, , 2),
Now choose a norm in an unitary m =-dimensional sf:ace V,ana

denote the unit eigenvector corresponding to the common ei-



genvalue A, (&) of &, , and X: by X, and X,
respectively. Let Y e V' be an arbitrary vector and de-
note by ’7“, a number with the following property:

(11) Y% - Nw ¥ €€, ((wy X, )m 0) =V, -

Let
am G = 1 Cxroy LRyl

For every e (0, @y ) this sequence has the limit
1l y (Cd) = | I .
(13) &o G New

We shall prove that this'convprgence is uniform with res-
pect to @ in every segment (o, B> c (0, @, ) -
Let

(14) oo =Y " Mo Xo °

Denote by M, the operator induced by the operator

Ej(‘;,‘ ) &., on the invariant subspace Y., . The matrix
gw depends continuously on @ and, as stated above,
Ay (w) 1s its simple eigenvalue. Therefore A,1 (@) is a
continuous function of @ , and the same is true for the

vectars X, and X;, and the scalar 7, . Moreover I M:f iy

. )k'u !
“Q‘,. I ¢ A, @) Lo,
Hal = 1
depends continuously on & . Choose a fixed @), € ( 0, @y ) -

i.e.

The operator M"’o has all eigenvalues less then 1, There-
fore there exists an integer q such that ] MZ;; l<C <1,

where C is a positive constant. The continuous dependen~
ce of MZ; | on @ implies the existence of a % > (
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such that llMg'lkC holds even for all @ e<a), -,
wo +2 D .
Now construct the following sequences:
2
Nz, i, UMbz, I, IME 01,...
22+1
(15) UMz, 0, IMEY e 0, WM e, ...
- 1 -
IME % 0, IMER "2 0, M3 e
These sequences of continuous functions of &) converge mo-
h.g+
notonically to 0 on {@,-%, @&, +9 ) , sincelle" Tel=
2, h-1) @ +4v -1, 9+
= IM&I, M 2, 1< CIMP=77 2% T4 Il ,for all po-
sitive integers & and for f ~0,1,...,4 -1 . Therefore
every sequence defined by (15) converges uniformly to 0
on { @, -7, @+ 2 > ; indeed for every & >0 the-
-
re exist K, % ...,k _, such that |l Ntf 2, <&
tor k> Jei (fr =0,1,...,9-1).Let ’*’e',,i.";ﬁfx.,h .
Therefare | M, %,ll< & for 4 & (b +1)-q + The inter-
vals (@ -1, @ +1% ) constitute an open covering of
the segment { &, 3 ) (in general % depends on @ ). U-
)
sing the Borel theorem we obtain A M “g | converges uni-
o
formly to 0 in <o, ), Since V9l - Qe (@)I& IM, 2,1,
also @, (@) converge uniformly to (7,1 in (et , 3>

Let us introduce the following notation: for any € > ¢ and

@ €(0,2) denote by &5 (@) a positive integer for
)
which “C::‘ (@ g4l & & and such that léf:zy. I>¢ for
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all M < b, (@D

Theorem 1: Let A fulfill conditions (4) and B fulfill
conditions (6); éhoose a Vector 4 € ¥V . Let there exist
@ segment ( oc, /3> € (0, G) ) such that 7, » 0 for
every @ 6 <o) /5 D . Then there exists an €, > 0
such that for every € € (0, €,) the following as-
sertion is true: there is a < > ( such that |k, (@)~
"""t (@)1 %1 for all @&, @eca, B with la), ~
~@,l < oo .

Proof: Let 0" be arbitrary with 0 < d’<gwﬁ)”lo"
According to (13) there existe a positive integer A, such
that
(16) 1961 ~ 0" < Qg (@) < Mas| +
whence, using (12),

AT (a1 -0") @) < IXX 4 l< (g j+ o) A% @)

forl¢.>-kzd-> and w € <Coc, 3> . The functions

£C6) = (174 (=)o Af (@) and £,(§)= (I, 1+028 @)

decrease. Now choose an & > 0 and determine the points

§ (w) ama §, (@) in which f, (§, (W)= £, (§, (W) ~E :
Loy (T;Z:-,E_—d—.—)

§1 (w()- ;
Ay (@)
(18) Lt 2
—€
gz(w). ’1¢)I+d"
lrg Ay (@)
Choose a real A, 0< A < 1. We shall prove that there
exists a '>0 with §, (@)-§, (@) < A for all

admigsible & and € . The difference may be estimated as
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follows: M (=" tog I'Z@l g
£, G- § @)r —Llaltd o e l+d o
2 dog 2, (@) W dog 2, (@)

WE<x,B)
ruwﬂ) ’Qm I-d~

% e <, 'ﬂ,l’lwl-t-d'

max .2. (@
@& ey @)bg’ ) -

We used the fact that fog. W is an increasing

(19)

function of § in the interval (J7, + @ ). The right
hand term of the last inequality is a continuous function |
of 0" with value 0 at J“= @ . It is therefore possible
to finda J'>0 such that 1§, (w) - § (@)l< A inde-
pendently of @ and £ .

Let 0" have this property, and take the corresponding fe .

Let € = amim mon
© 0 k0,10, R, a:e(ac/!) % 'y'"’

Since the functions §1 (@) and §z (e ) are continu-
ous on (<, /3), they are uniformly contimious. Hence the-
re exists a a¢ > ( such that for la, - @, | < ¢ ,ay,

*

and choose € < e, .

w,e <ax, #) there 18 1§, (@)~ §, (@) 1<
<~1-Z—4— ad | §, ()~ f,_(w,)l<-1§:—4-.

Choose ), , @, € <o, B) with |ay- @, <.
Forall @ & <, ) and k= 0,1,..., fe, there is
Nl 41> & . This implies, that both K, (&) > Jo
mad fe, (@) > Ay, and these constitute a sufficient
condition for the validity of (17). Therefore both &, (@)
and ’*E (@,) satisfy the following inequalities !
(200§ (@) & R (@) & § (@) + 1,
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(21) min (§, (@), §, (,)) & K, (@)% max (§, (@),
§, (cco, + 1 .
We shall now estimate thie difference of the upper and lower
bounds far AR, (@;):
|mav (§, (@,), §, (@,))+1- min (§,(,),§ @, N&
(22) € |§1(a).,)— §, () + mim (g, (w,)- §, (@), |§2 (@) -
“§ @D+ @Y-§ @ 1< LA A LA gy,
Thus most two integers lie between these bounds and there-
fore |de, (a,) - b, (2,01 & 1 .
Theorem 2: Let A fulfill conditions (4) and B fulfill
conditions (6). Then
a) Take any finite sequence of real numbers Gy <@, o< Qpy

from the interval (0, @4 ). Let 44 be a vector such that
'70)_,"‘0 far 1 = 1,..., 1. Then there exists an €, > 0 such

that
(23) d, () & &, (@, )
for £<£o, 1:-'4’2.7--"71—"40

b) Take any finite sequence of real numbers a, < @ oo <Gy
from the interval < &), , 2 ). Let 44 be an arbitrary vector,
y + 0.
Then there exists an €, such that, for £ < &, ,
(24) dg () & B, (@, ), 1=1,2,0.,2-7.
Proof: It is obviously sufficient to prove the theorem
for fr = 2.
a) If two numbers ( < @, < &), < Gge are chosen,
- then, according to (8), A, (@,) >, (@, ) . Choose
< mim (a1, 1M, | ).
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Then a positive integer z&«,, exists such that for & > &,

& L 13 & :
(25) Ny g 1>y 1= 07D A C@y)s 1, y ll< (1 | +0IA7 ()
Tpere exists a positive integer 4, such that for & > R,

(28) (17, 1 + S IAR (@) )< (170, 1 = ) 2% C@,) .

Let &, - mat Oy k) and €, i ’"é‘f,:'y'” .

Now choose € < €, . For every /h;ak, there is lléf‘: % I-¢€,
therefore Mg (@,) > k, , If for some A& the inequality
1% 4 H< € s satisfied, then _k >k, , whence

@ ) Loy g 1<l 1+ A (@) < (P I- d’)A"(GJ)cllx"‘y,ks
Therefore R, (4,) £ A (w,) -

b) Let two real numbers @, and G be chosen, g ¥
Sa <ay<Lrere 1o 185 U = (ap - 1M (gl £,
(i =1,2).

It is easy to prove that both sequences u(al'_':,‘ x‘"i )hy.ﬂ

(1 =1,2) have finite nonzero upper and lower limits as R
tends to infinity. Assertion b) can be then proved enalogbus—
ly as case a) if we note that 0< & < /mun«

) 4 Py iwq, 2
Lm anf Il € -‘;,7-—_—4-356.,) | implies the exis-

& ~»hao
tence of a positive integer R, such that, for .k > *,,

(28) llo‘ta, oy ll< C (lum. /saf»(% 4éﬂa,1)hy+d")(a)1-4)&'<

< clim int (Lot P -1 1h oy 1.

o~y +o0

Remark. If the matrix A 1is symmetric, then the asser-
tions of theorems 1 and 2 hold even if (6) b) is replaced

by4>(“4=(u‘z=:¢¢=<“¢*>00

4, Conclugjon, In theorems 1 and 2, two basic properties of
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the characteristic —*«E (@ ) were proved for small €.
Theorem 2 expresses the"monotonical" dependence of

4o, () on the relaxation factor in the intervals
(0,a)) and (& , 2). In theoren 1 the "quasi-conti-
mity" of ""e (w) (defined in the statement of theo-
rem 1) as a function of @ in the interval (0, &) is
treated. It seems very unlikely that a similar result
holds in the interval < & , 2 ). In the proof of Theo-
rem 1, the fact that the sequence (g (@) =

=l (A, (e »-1 £, )""’ %4 Il converges as .k tends to
infinity for every < € (0, & ), is substantially
exploited. However, in the interval < &y, 2 ) all ei-
genvalues of the matrix ((@w -1 )'435“_, )h have unit modu—
11 hence in the general case the sequence Il ((@~ 4)'%“) yll
is not convergent.

The dependence of M (@) on @ €(0,2) for &
16 x 16 matrix with properties (4) and (6) was investi-
gated by J. Zitko. A preliminary result is the following:
while in the interval (0, &g ) the dependence of Ao (@)
on & was "quasi-continuous", the changes of R, (@) for
w elaw, , 2) are step-like. (The report on further
investigations will be published in the Czechoslovak Mathe-
matical Journal.)
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