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Commentationes Mathematicae Universitatis Carolinme
T, 2 (1966)

A NOTE ON QUASI-SPLITTING OF ABELIAN GROUPS
Ladislav PROCHCZKA, Prsha

In the present note, some relations bestween the
papers [1],(3) and (4] will be investigated. .
A group shall always mean an additively written

abelian group. If G 1is such a group,. then G, denctes
the maximal torsion subgroup of G. A group G is said to
be split if G, is a direct summand of G. In general, we
adopt the notation used in [ 2],

Lemma 1. Let L be a torsion free group, S & sub-
group such that m L € S S L gor some positive in-
teger M . Then
(1) Ext (L,K) ¥ Ext (5,K)
for every group K . .

Progf. Let <» be the isomorphism of L onto m L
defined by o (X)=mX (X € L ) and let y be the natu-
ral homomorphism of S onto S/m L . The sequence

0—=L £ss ¥, 5/nl =0
is exact, and therefore the sequence

Ext (S/m L, K) XS Ext (5,K) LS Ext(L,K)— 0

is exact for any group K . Thus there is an :lsanou"phisn
(2) Ext (L,K) X Ext(S,K)/¥y*(Ext(S/mL,K).

Since m (S/m L) = 0, there 1s also (see [2}, § 63, D))

m(Ext(S/mL,K) = 0 , and hence m y*(Ext(
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(S/mL,K))=0. This means that y*(Ext(S/m L ,K)) is a
bounded subgroup of the divisible group Ext(S,K), S
being torsion free (see [1), theorem 3.1, or [2], § 63,
I)). From this it follows easily that

(3) Ext (S,K)/y*(Ext (S/mL,K)N ¥ Ext(S,K) .

(1) 1s now a consequence of (2) and (3). [Recall that two
groups G,H are sald to be quasi-isomorphic (denct ed
s G & H ) if there exist positive integers m , m
and also subgroups S and T of G and H respectively

with mGSS sG6G, mHs T e H , amd S = T .

Lemma 2. Ir L , L, are quasi-isomorphic torsion
free groups, then Ext(L,,K) = Ext (L,, K) for
every group K .

Brogf. Since L, = L, , there are subgroups S; ¢
Sl;(i=1,2) such that S, £ S5, ama mL, € S
(i = 1,2) for some integers m,,m, . By lemma 1,

(4) Ext(L,,K)= Ext (S;,K) (i=1,2)

for any group K. Sinee S, X S, , there 1s Ext (S ,K)=
XExt (S, , K) and the required assertion follows hence
by (4),

The following definitions were introduced in [4].

Definition 1. A torsion free group A 1is called &
K =-group if, for every torsion group P, any group G
splits whenever G 1s an extension of the group H=A 4+ P
by & bounded group.

Defipition 2. A torsion free group A is said to be
of locally fimite Z-rank if A/n A 1s & finite group
for every prime v .

For example, any torsien free group of finite rank,




and alse the additive group of {L-adic integers, are
groups of locally fimite . -rank.

The following propositions can be easily deduced
from definition 1 (see [4]).

Lenns 3. a) Let A be a K =-group and P a torsiom
groupe If H is asubgrompof G = A + P such that
mG s Hs G for some positive integer m,
them H is a splitting group.

b) If A, , A, are quasi-isomerphic torsiom free
groups, then A, is a K =group if and only if A, is
a K =group.

Lepma 4. If groups G and H have G = H , then
G/G, & H/H, -

Proof. Consider two subgroups S and T of G and .
H respectivelywith S &€ T amda m Gs S e G,
mHSE TS H for some positive integers m ,m . From
S & T it follows that S/S, = T/ T, . since

$/8, =5/(Gq,nS) {S5,G, }/6, >
T/T, =T/(H n TYEAT, H, {/H, »
there is an isomorphism
{$,6,31/G, =4{T, H,3/H,
Hence and from
m(G'/Gt)-{mG,G*}/G; £{5,G1/G, sG/G ,
m(H/H)={mH, H }/H,s{T, H 3/H, s H/H ,

one dotains the assertion of the lemma.

Lemma 5. A torsion free group A is a K =-group if
and only if, for every torsion group P ; every group G
with G & A + P splits.
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Broof. Let A be a K =group, let P be any tor-
sion group, and consider a group G with G A + P,
Then there are positive integers »m , m and sulgroups
S, T suhthat mGSSEG, mHE TS T, and
S T.By lemma 3 a), T splits; therefore T = A1 + T
end S=A, + S, with A; & A, . Clearly, T &
& H, and hence A1 X A by lemmas 4. According to
lemma 3 b), both A,, Az are K -groups. From m G €
g A,+S, € G 1t follows that G splits.

On the other hand, suppose that for every torsion
group P, anygroup G with G & A + P splits.
Let there be.given a torsion group P , and consider an
extensien G of A + P by a bounded group. Then
mGs A+Pes G for some positive integer m , and
therefore G ¥ A 4 P . By sssumption G splits,
so that in accordance with definition 1, A is a K =-group.

Theorem 1. A torsiom free group A is a K =group
if and only if Ext (A, P) 1is a torsion free group
(possibly trivial) for every torsion group P .

Progf. Suppose first that A is a K =group, and ta-
ke a torsion group P . Let the exact sequence
(5) 0 »>P—-G —o>A -0
represent an element of fimite order in Ext (A, P). By
[3 , theorem 3] for some positive integer 7t the sequen-
ce .

0 >P—a{mG,P} > mA—0
is splitting exact. This means that {m G, P}=A* 4+ P,
where A*X mA X% A . Thus A* is alec a K -group,

-
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Sincbe M G S A* + P s G , there is G = A*:
4+ P ., By lemma 5, this implies that G is a splitting

group, i.e. that the sequence (5) represents the zero ele-

ment of EXt (A, P) . Thus we have proved that
Ext (A, P) 1s torsion free.

Now suppose that Ext (A, P) is torsion free far eve-
ry t;araion group P . Take a torsion group P , and conli;

der agroup G with G & A 4 P , It will be showmn
that G splits. By [3, thearem 5] the exact sequence
(6) 0—+Gt—»G-—>G/Gf-—>D
represents an element of finite order in the group
Ext(G6/G, , G, ) . From lemma 4 it follows that G/G, =
&= A ; thus, in view of lemma 2, ‘
n Ext(6/G,,G ) = Ext (A,G,) -
By assumption, EXt (A ,G,) 4is & torsion free group,
hence, by (7), the growp Ext (G/6, , G, ) 1s also tor-
sion free. Thus (6) necessarily represents the zero ele-
ment of Ext (G/G, , G, ) . This means that (6) is a
splitting sequence, i.e. that the group G splits.
By lemma 5 this proves that A is a K =group.

Corollary l. Let A* pe a subgroup of a torsion free
group A such that A/A* 1s & reduceda TT ~primry
group with finite T . Let A, (m =1,2,...) be tar-
sion free groups of locally finite . —rank.

a) If A sn21 A, then Ex‘t(A"f, P) is
torsion-free for any torsion group P .

NI A= S A, then Ext (A, P) 1s

m=q 4



torsion free for any torsion group f.
[ -]
Progf. If A = 3 A, , ‘then A* is & K =group;
this follows from [4, theorem 7) . Now one may apply theo-

o0
) x _
rem 1. Analogously, for A* = ﬁz_q An

Theorem 2. Let A.be a torsion-free group represented
&s the union of an increasing chain of subgroups Am
(m=1,2,...) with A, = 0 . If every An,, /Ap
(m=1,2,...) is & torsion free group of locally finite
# =rank, then A is a K =-group.

Eroof. By [4, lemm 5], a1l A, (m=1,2,...) are
torsion-free groups of locally finite 4 =-rank. Applying
{1, theorem 3.3 ), one obtains that Ext (A, P) 1is tor-
sion free for every torsion group P .

Theorem 3. If a torsion free group A is a direct sum
of K =groups, then A 1is again a K -group.

Progf. Congider A = :.%1 A, ,  where all A,
(L el) are K-groups, and let.- P be @& torsion group.
Then
(8) Ext (A,P)‘&"_%*(Ext (A ,P) ;
here the symbol = * denotes the complete direct sum. By
theorem 1, all groups Ext (A_ ,P) (L el ) are
torsion free; thus, in view of (8), Ext (A, P) must
also be torsion free, Now the required assertion follows
from theorem 1.

Repgark. Theorem 3 was also proved in [4, theorem 2], di-
rectly from the definition 1 of @ K =group. In [4), it is
also shown that every torsion free group of locally finite
% =rank is a K -group. This proposition is obtained as
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a consequence of the following general theorem, [5, theo=
rem 3]: If H 1is a subrgoup of finite index in a group
G, then G splits if and only if H splits. From this
it follows that every torsion free group of finite rank
is a K -group, [ 6 , theorem 5], and also that if a
group G of finite torsion free rank is quasi-isomorphic
to a splitting group then G splits.

A group G is called quasi-splitting if it is qua-
si-isomorphic to a splitting group.

Theorem 4. If A is a torsion free group, then eve-
ry quasi-splitting group G with G /G, & A is
splitting if and only if A is a K =group.

Proof. Suppose first that A is a K -group. Consi-
der a quasi-splitting group G such that G/G, & A, .
and let G = A* &+ P |  where P is a torsion
group and A* is torsion free. By lemma 4, A G-/G; e
£ A¥*, thus, in view of lemma 3 b), A* is a K =-group.
On applying lemma 5 we obtain that G splits.

Now suppose that A is not a K =group. By theorea
1, there is a torsion group P for which Ext (A, P)
is not torsion free. Take an exact sequence
(93 0—=>P—>G—>A—> 0
representing an element of finite order m >1 1n
Ext (A, P). Hence G does not split. By [ 3, theorea
3], the sequence .

0 >P—>{mG,P} > mA—>0
is splitting exact, therefore the group G, = {m G, P}
splits. Since nG s G, & G , there 18 G, & G,
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and thu; G 1is quasi=splitting. Hence one has a quasi-
splitting group G with G/G-t X A (see (9)),
but which does not split.

This completes the proof of the theorem.

Corollary 2. Let A be a tersion free group and let
G be a quasi-splitting group with G /G, = A .

a) It A =-L£ZI A, , where every A, (L € TI)
is either countable or of locally finite /4 -rank, then
G splits.

b) I A 4s the union of an increasing chain of asub-
grops A (m =1,2,...; A = 0) such that eve-
ry Am+1
te 2 -rank, then G splits.

Proof. In both cases A is a K =-group. Indeed, in

casé a) this is a consequence of [1, corollary 3.4] and

/A m 18 & torsion free group of locally fini-

of theorems 1 and 3; in case b) this follows from theorem
2. Now one may apply thearem 4,

Corollary 3. Let A, A* anda A, (m =1,2,...) be
groups as in corollary 1, and consider & quasi-splitting

group G .
0
a1t A = 3 A, amd G/G = A* | then
m =1
G splits.

o0
b) I A¥ =n§1 A, e G/G = A | the
G splits.
(-
Proof. It A = nZ’1 A, , then by[4, theorem 7],
A¥ is.a K =group. Now our assertion follows from theorem

” 00
4; snalogously for A¥* = > A_ .

n =1
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