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DIFFERENTIABLE REPRESENTATION OF FLOWS
(Preliminary communication)
Otomar HAJEK, Praha

The main result, Theorem 6, will be published later *
with full proofs, in [2].

1. A (bilateral local) flow in P is a partial map
t: R'x Px R"— P with properties 1° to 3° below. To
express these reasonably, it is useful to introduce the
system of movements {xtyloc, A in R7} of t; an in-
dividual movement “fﬂ is then defined as the partial’
map K‘t:ﬁ : P—> P such thgt

“t/sx = tlx,x,p)

iff the right side is defined. The three requirements are

then
1° L X =X whenever the left side is defined,

2°For all « 28 > in R” there is

B opty Tty &Y

3°1f _t_x is defined, then eo is %t x for suf-
ficiently small |8 -ov | .
These may be termed, in turn, the initial val_ue I‘Jroperty,
the compositivity property, and the local existence ton=
dition. In 2°, (1) should be interpreted strictly, with
composition of partial maps; in particular, if °‘—th is
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defined and B is taken arbitrarily with o = 4 = 9,

‘then ptr“‘ and ,{",; (ﬂt‘,x ) mst both be defined.

2. The significant subset of P < R? ,
D= {(x,ec): t x defined }

will be termed the golutiop-apace of *. The flaw
will be called global iff 1.3° may be strengthened to
conclude: ... for all & € R? . The flow + will be
called immobile iff 1.1° may be strengthened to: RELES
whenever defined.

3. Assume given a flow t in P and also a topology
on P; then t will be termed a gontinuouys flow in the to-
pological space P iff the following further conditions
are satisfied: '

‘e 1° .domain t 1s open in R'x Px R,

2° t: domain t — P is contimuous,

(Here and later, the giw‘ren topology on P and the natural
topology on R!  1induce product topologies on P x R? y
R'x Px R?1, etc., and then also a subset topology on
Dec P x R?, etc.; these are the topologies used in 1°
and 2°,)

4. Assume given & differential equation in euelidean

m -space R™

o x .
;3-. f(x,e) ) (2)

with £ : D = R™ continuous apd D.c R™*+1 open, If
(indeed, 1if and only if) the solutions of (2) exhibit uni-
eity (of the initial-value problem, in the usual sense),
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then (2) defines a flow t im R™;this is described as
follows: set « =t (X, x, 3 ) iff(x,A)eD and
there exists a solution s of (2) with sfB= X, s&C = «.

For definiteness, s is & (classiocal) solution of (2)
Aff S is » partial map R? — R™ with domein S an
interval in R? am

a—%—sbs-ﬂsﬂ,&) for all B € domain s .

That t satisfies 1.1° to 3° 1s verified easily; 3.1° amd
2° follow readily from classical theorems (e.g. 3.2° s
a re-formulation ef centimuous dependence of solutionms om
initial data). Obviously the flow t associated with (2)
describes the equation sompletely; thus GL X with fi-
xed (X, %) 6D amd variable © 1s a solution of (2).
Easily, the solution space of 1t is precisely the domaim)
of f.

Flows obtadmed in this mammer (with the exhibited re-
quirements on £ amd D ) will be termed differential. This
term will aleo be applied to flews similarly associated

with differential equations on differentiable 7 ~mani-
folds (i,e. topological m -manifolds with a specified
differential structure); the detailed formlation is pos-
sibly obvious. '

Evidently + is global iff (2) has prolongability
(1.e. global existence) of solutions; and t 1s immobile
ife (2) is preeisely dx/d 8 =0 .

5: It is natural to ask whether also conversely eve~
ry eontinuous flow on a manifold is differential, Since the
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flow axioms 1.1° to 3%, 2.1° and 2° involve only the to-
pological structure but not the differential, the question
must be amended tomad: Is every continuous flow on a ma=-
nifold homeomorphic te a differential flow? Of course this
requires a definition of the concept of homeomo;-phic flows.

Thus, let ¢ and t° be continuous flows on topologi-
cal spaces P and P’ (with solution spaces D, D’ respec-
tively); then a partial map 4 : Px R7— P'x R will
be said to be ® homeomorphism t — t° 4iff the following
three conditions are satisfied:

1° 2: D = D’ is & homeomorphism,

2° h(x,0)=(h,(x,60),8) forall (x,0)eD,

3° hy (it x,0)= Gt Ay (X, ), whenever ei-

ther side is defined.

Here 1° includes the requirement that D c domain Ao .Con-
dition 2° may be loosely expressed as stating that 4L lea-
ves time invariant; together with 3% this is the abstract
counterpart to "transformetions” of (2) of the form a4 =
=h(x,0)with 4. as "new independent variable®, leading to

dy/d6 =... . Obviously then also A7 is a homeomorph-
ism t'— t .

6. Having established the terminology, one may forma-
late the main result as follows:

_Em To every continuous flow t on a differentia-
ble manifold there exists a differentiable flow t’ homeo-
morphic to t ; furthermere, t’ may be taken immobile (i.e.

corresponding to dx /d 6 = 0 in some local coordi-
nate X )
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T. This result shows that the concept of a continu~
ocus flow is & perfectly adequate generalization of diffe-
rential equations(2) on manifolds; axioms 1.1° to 3°
then formulate the "ahstract dynamical properties", and
axioms 3.1° and 2° the conditions of compatibility with
the topological structure.

A continuous flow t may be interpreted directly, as
describing the changes in time of a deterministie physi-
cal system; the individual movements ‘_‘tﬁ are the (ac-
tual or sbstract) movements of the system. Theorem 6 may
then be formulated, inaccurately but more vividly, as
stating that an equivalent interpretation of t is as thel
observation of a completely immobile system from a time~
variable point of view (this latter concerns the possible
dependence on "time " 6 of h,(x, 6) in5.2°),

8. An immediate consequence of Theorem 6 is the

COROLIARY, Let t be a continuous flow on an 7 -mani-
fold. Then each point of the solution space of t is con-
tained in some open integral aet .'D., (i,e. such that
(X ye8)e D, implies (Dt;cx’ 6)eD,) with the
following property: There exist m functions by, : D — R1
such that

1° cach ’h’—b is constant along trajectories of t* in
D, ieee M (gt x,0) = fa(x,00) if (x,00) €D, ama
et.c“ is defined, and

2° themap . : D, —R™ 7T with h(x,0) =
= ({4, (x, 611" , 6) 1is a homeomorphism of D, onto

an open set in R™*7?
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9 There is a familiar connestien (e.g. [3], chape
X, § 32, Sats 1) between a differential equation (2) in

Rw, l.ee ® systen

_:_'gﬁ..*(x,a), (ho= 1,y m ),

(with X ={§ 3., » £= (g I0., » etc.), and the
partial differential equation for 7

n O (x,6) dn(x,6)
hgtg‘(x,ﬂ) 35,, + 30’ -0 . (3)

Corollary 8 is then the abstract counterpart to the lo-
cal existence theorem for Hauptsysteme vom Integralen of
(3)s

10. As & matter of fact, Theorem 6 holds even for P
& general topological space. The resulting immobile flow
t’ can be extended to & global flow +* 1n the obvious
manner, 'f‘;""x- X forall (X,x)eD’ and f¢
6€R'.Thus ome obtains a global extension precedure for
flews, and this may be exhibited as the action of & faith-
ful funetor between the appropriste categories (of conti-
nuous flows and its full suboategory of eontinuous global
flows). Actually, this lest result was obtained firet, in
the attempt to generslise the results on global extensions
of dynamical systems [1] to nen-stationary flows.
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