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Commentationes Mathematicae Universitatis Carolinae 

7, 2 (1966) 

DIFFERENTIABLI REPRESENTATION OF FLOWS 

(Preliminary communication) 

Otomar H^JQC, Praha 

The main result. Theorem 6, will be published later * 

with full proofs, in L2]« 

JL» A (bilateral local) flow in P is a partial map 

11 R*x Px R<~* P with properties 1° to 3° below* To 

express these reasonably, it Is useful to introduce the 

system of movements icct^ I oc, fl in R*1 f of t; an in­

dividual movement ^"K is then defined as the partial 

map t : P —* P such that 

t x - t Coc,x,fl) 

iff the right side is defined* The three requirements are 

then 

1° t x *• X whenever the left side is defined, 

OC aC 

2° For all oC */3 ^ J ** R* t h e r e i s 

t o t -» f , (1) 
3 If ^t x is defined, then so is t x for suf-

ficiently small IQ - «-• I • 
< 

These may be termed, in turn, the initial value property, 

the compositivity property, and the local existence con­

dition* In 2°, (l) should be interpreted strictly, with 

composition of partial maps; in particular, if t x is 
9 
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defined and fi i s taken arbitrarily with ac m fi & Xt 

than t x and t C jfr * ) must both be defined. 
fi T * /» ^ T 

£• The significant subset of P x R* , 

J * f CX,<JC ) : ^"^x defined } 

Will be teamed the flolttlfion-apacfi of t . The flow * 

will be called global i ff 1.3° may be strengthened to 

conclude: «... for a l l B e R* « The flow t will be 

called iftByftMl«i iff 1.1° maor be strengthened to: t x m x 

whenever defined. 

3. Assume given a flow t in P and alao a topology 

on Py then t will be termed a eontinuoua flow in the to­

pological apace P iff the following further conditions 

are satisfied: 

wn 1° - domain t la open in R* *. P * R* > 

2° t s domain t —• P ia eontinuoua. 

(Here and later, the given topology on P and the natural 

topology on R induce product topologies on P *. R*, 

R** P * R* - etc. f and then alao a subset topology on 

JJc P x R4 , etc.; these are the topologies used in 1° 

and 2°.) 

4. Assume given a differential equation in euclidean 

m. -apace R** 

with f % D - * ft** continuous and D ,c R^** optn# i f 

(indeed, i f and only i f ) the solutions of (2) exhibit uni-

city (of the initial-value problem, in the usual sense), 
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then (2) definee a flow t ia R^jthie l e deacribed aa 

follows: eat AJL -* t (oc, x } fl ) itt(x,fi)e J> and 

there existe a solution s of (2) with sfim x, S<JC * 4c* 

For definiteneae, s ia a (claaeical) eolution of (2) 

i f f 5 ia a. partial aap R* ~+ R"* with doaaia s aa 

inter? a l i a R* aad 

grgr s B m -t(s6 , 6 ) for a l l & € doaaia 5 . 

That t sat i s f ies 1.1° to 3° le verified easily; 3.1° and 

2° follow readily froa olaeeical theoreas (e .g . 3*2° ia 

• re-formulation af oentinuoaa depeadeaoe of solutioae oa 

i n i t i a l data)* Obviously the flow t associated with (2) 

describee the equation eoapletely; thae A x with f i -

xed (ex. <*,) e 3) aad variable 0 le a eolation of (2) . 

Eaeily, the solution apaee of t le precieely the domaiaj) 

of f . 

Flews obtadaed ia this Banner (with the exhibited re ­

quirements oa i and D ) wi l l be teraed Aiffaraatlal^ Thie 

tera wi l l alao be applied to flews aiai larly aaaoelated 

with differential eqaationa oa different labia ia-aani-

folde (i#e. topological rrv -aanif olde with a epecified 

differential etructure); the detailed foraulation ia poa-

eibly obvioua. 

Evidently t ia global i f f (2) aaa prolongability 
* < 

( i . e . global exietence) of eolutionej aad t ia iaaobile 
i f f (2) i s preeieely dLx/dLQ « 0 • 

5* It l e natural to aek whether alao coatereely eve-

ry continuous flow oa a aanif old la differential. Since the 
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flow axioms 1.1° to 3°, 2.1° and 2° involve only the to­

pological structure but not the differential, the question 

must be amended to road: Is every continuous flow on m ma­

nifold homeomorphie to a differential flow? Of course this 

requires a definition of the concept of homeomorphie flows* 

Thus, let t and t' be continuous flows on topologi­

cal spaces P and P' (with solution spaces J), D' respec­

tively); then a partial map Jh t P x. R^~> P'<* R* will 

be said to be * homeomorphiam t -* t' iff the following 

three conditions are satisfied: 

1° A . J) * D ' is a homeomorphism, 

2° A (x, 0 ) * (A^ (x,9), 9) for all (x,9)e D, 

3° Ai C^x, 9 ) - (i^ A, ( x, <*, ) ; whenever ei­

ther side is defined* 

Here 1° includes the requirement that D c domain <tv . Con­

dition 2° may be loosely expressed as stating that A lea­

ves time invariant; together with 3° this is the abstract 

counterpart to "transformations" of (2) of the form <y. ~ 

«Ji6c,0)with fy as *aew independent variable", leading to 

dy*/dd «... . Obviously then also JhTi is a homeomorph­

ism t' ~* t . 

6* Having established the terminology, one may formu­

late the main result as follows: 

THEOREM. To every continuous flow t on a differentla-

ble manifold there exists a different la ble flow V homeo­

morphie to t $ furthermore, t' may be taken immobile (i#e. 

corresponding to dx /d& « 0 la some local coordi­

nate X ). 
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7. This result shows that the concept of a continu­

ous flow i s a perfectly adequate generalization of d i f fe ­

rential equations(2) on manifolds; axioms 1.1° to 3° 

then formulate the "abstract dynamical properties", and 

axioms 3.1° and 2° the conditions of compatibility with 

the topological structure. 

A continuous flow t may be interpreted directly, as 

describing the changes in time of a deterministic physi­

cal system; the individual movements ^t~ are the (ac­

tual or abstract) movements of the system. Theorem 6 may 

then be formulated, inaccurately but more vividly, as 

stating that an equivalent interpretation of t i s as the 

observation of a completely immobile system from a time-

variable point of view (this latter concerns the possible 

dependence on "time M 6 QfA/^,5) in 5.2°) • 

8. An immediate consequence of Theorem 6 i s the 

COROLLARY. Let t be a continuous flow on an <n -mani­

fold. Then each point of the solution space of t i s con­

tained in some open integral set -D0 ( i«e . such that 

(X > <&) e D0 implies ( ̂ x , 6 ) c D0 ) with the 

following property: There exist in functions M>j^i\-* R* 

such that 

1° each M^ i s constant along trajectories of t in 

D0 , i . e . <h>(0%c x , 0) - A U . d ) i f (x, <*,) e<J)0 and 

flt> i s defined, and 

2° the map Jh, : 130~+Rm' + i with Jh(x,&)** 
39 d^%(*i 0 f̂cT-f f & ' i s a homeomorphism of D0 onto 

an open set in R^*'1 . 
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9* There ie a faaiXiar oonneetien (e*g» [3J, ehap* 

X, § 32, Sets X) between a differential equation (2) in 

R^, i*e. a eyetea 

.fflft- » u(*f9), (<*>- 1t—7 /n') / 
cL G "^ 

(with X-fgfcC. . , * f-{s%,}Z-< > e tc . ) , and the 
partial differential equation far n 

?UL(X fi} dfl<*>e>
 x 9*(*,0> n 

Corollary 8 ia then the abetraet counterpart to the l o ­

cal exietence theorea for Hauptayateae voa IntegraXen of 

(3)* 

X0# Ae a natter of f ee t , Theorea 6 hoXda even for P 

a general topoXogieeX epece. The reeuXting laaobiXe flow 

£' can be extended to a gXobaX flew t * in the obvione 

Banner, t * x - x for a l l (x, at ) * D ' and 0 e 

cR^.Thne oat obtains a global extenaion procedure for 

flewe, end thie aajr be exhibited ee the action of a fa i th­

ful functor between the appropriate categories (of conti­

nuous fXowe and i te f u l l subcategory of eontinuoue global 

flewe)* Actually, thie Xeet result waa obtained f i r s t , in 

the atteapt to generalise the results on global extensions 

of djaaaioaX systeas til to non-stationary flowe. 

R e f e r e n e e e 

fXj 0* HaJKs Structure of dynaaioaX eyeteaa, thie Jour-

aalt6,1(1965),53-72. 

Correctien, thie journal,6,2(1965),211-

212. 
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