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SOME EXISTENCE THEOREMS FOR NONLINEAR PROBLEMS
Josef KOLOME, Praha

1. Let X, X, X, be Banach spaces. A mapping F: X, — X,
is said to be bounded if F transforms bounded sets in X,
into bounded sets in X,_.We shall say that & mapping F:
')( —-))( is linearly bounded if there exists a positive
number 4 such that NF(x) I = ¥ Il x| for every xe€ X,.
A mapping F: X, — X, 1s said to be linearly upper boun-
ded [1], if there exist numbers ou, 9" >0 such that
IF(x) £ ¥ Ix1 whenever x|l = ot . Similarly we shall
say that F : X;—> X, 1s linearly lower bounded if there
exist numbers By ¥>0 such that IFGINE ¥ N xl
whenever Ix Il £ B . Let F:X,— X, be a mapping of X,
into X, . If the number lFl-m'f' {m?"’:&’" ="}

<P<+w
is finite, then the mapping F 1is linearly upper bounded.
The number |F| is called the quasinorm of f, see [2]. The
mapping F: X, ~ X, 1is said to be asymptotic close to a li-

near continuous mapping L : X,— X, 1f‘ ‘&'fm, (N F(x)= LOO ExT)-0,
X ll>a0

In particuler, a mapping F : X, — X, is asymptotic close

to zero ir m CAFGOMN Ila(ll"') =0 . This definition
x5 0o ¢

is due to M.A. Krasnoselskij (3] and the following theorem
to V.M. Dubrovekij [3]: If F: X —» X is completely conti-

nuous (i.e. compact and continuous) and asymptotic close to
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.
zero, then (I + F)X = X . The results of A. Granss [2]
and M.D, George [4] are closely related to this theorem.
The purpose of this note is to give some further existence
theorems for nonlinear functional equations without assum=

ptions of complete continuity of F .

2. In the sequel E .denotes the identity mapping of &
real or complex separable and complete Hilbert space X,

X & (0). .

We shall say that a linear continuocus mapping A : X — X

of Hilbert space X is normal if AA*=A¥ A , where A¥
denotes the mapping adjoint to A .

Theorem 1. Let F: X—> X be a mapping of a Hilbert space
X into X such that, for every X € X it has the Gateaux
derivative F’(x) . Let PF’(x) ¢ & normal mapping for
every X € X such that (PF (x)A,h) 2 0 for every
xeX,heX, where P is a linear mapping of X onto X
having an inverse P, P £ (pup I F/(x)I)-T

If |E ~ PFl< 1, then the equation F(X) = 44 has at least
one solution for every 4 € X .

Proof. For every X € X the mepping G(x)= X- P F(x) has
the Gateaux derivative G'(x) am G'(x)=E - PF’(x) .

Because - G/(Xx) 1s a normal mapping for every Xx € X , thén
, (see (5]) .

¢ = , , ': _P o =
16(x )} 'ml(G (x)Ah,h) IMI(J» Fix) b, n)l

= - (PF* h)l i
Worid [1-(PFA(x)h, S 1, since



0 (PF’(x)A,h)inPl(;:«gt HF(x)1) <4 for every Xe€

eX amd M eX with [l hll=1. Because IG(x)-G@H)l&
£1GY%)M lx~4 Il , where X 18 an element which lies on
the line-segment connecting the points x, ¢ & X and

x’;‘;{""G'(X)" £ 1 , we conclude that G: X > X is
Lipschitzian mapping with constant one. Now let fy.* be

an arbitrary point in X and set z*= P(%*). The equa-
tion F(x) = 4* 1s equivalent to X ~G(x)= x* . Ve
shall show that there exists an element X* € X  such
that F(x*) = 4* . Define a mapping G: X — X by
G(X)=G(x)+ z* for x € X . Since |Gl < 1, it
follows that the inequality I G(x)l Uxl'< € < 1
holds for all X with norm ixll 2 @, , where £ , @,
are some constants. Now choose a positive number »* such
that €E+¥ <1 amdlet @ =12*1 7", Put £ =g+
+@ 1 Da{xeX;lIxNEn}, S={xeXslxl=rn2.Let x € S,
then IG (M E£Nx* N+ IG(X)I £ (E+y)lxl < x| .
Thus 1G (x)l < Il | for every X € S, Also l§(x1)—
~G(x) ISl x - %, | for every x,,X, € D . Hence &
is Lipschitzian with constant one on D, G: D — X anmd
G(S)c D . Since all the assumptions of Browder’s
theorem [6] are fulfilled, there existsat least one x*e D
such that G(x*) = x* . Hence x*=G(x*) + z * and
therefore F(x*)=P~'(z*). Because P %z*)= y,*, there
is F(x*) = n*  -which completes the proof.

Repark 1. Every bounded linear symmetric mapping is normal.

- 209=




I# F’(x) 1s continuous on X, P=E or P=1VE, ¥ >0,
then the theorem 1 holds in particular for the equations
with poteneial operators (cf.[7], § 5, theorem 5.1). For
some classes of potencial operators see [ 7], chapt. VI.
and [8], chapt. VI.
Remark 2. The condition |E -PF | < 1 is equivslent
to the following assumption: there exist numbers oc , ¥ >
>0,% <1 such that

Ix-PF(x) % 3 x|l whenever Ixl = o .

Corollary }. Let ¢ : X— X be & mapping of a Hilbert
space X 1into X such that, for every X € X it has
the Gatemux derivative ¢’'(x) . Let ¢‘(x) be a normal
mapping for every X € X such that | (A (x).b, ) £
£ 14 1% for every x e X , o € X . If the mapping AP
is linearly upper bounded with a constant ¥ < 1 (A
is a real parameter), then the equation X-A¢ (x)= Yy
has at least one solution for every a4 € X .

Theorem 2. Let X be a Hilbert space, A a linear (not
necessarily continous) mapping with domain D (A) c X
and A(X)= X . Suppose that A has a continucus inverse
A" Let d: X —=> X be a mapping of X into X
ssymptotic close to zero having the Gateaux derivative
$’(x) for every xe X . If 2l ATpx) € 1,

then (A+®)D(A)= X , 4.e. the equation A(x)+® (x)=
=ny, x€ D(A), has st least one solution for every

yeX.
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Proof: The equation A(X)+¢(x)=y (x€eD(A), 4 € X)

is equivalent to x + A 'd(x)=A" (4 ). We have D(A +P)=
=D(A), D(E+A"P) = X . Because ¢ is asympto-
tic close to zero, then for an arbitrary € > (0 there
exists a number N = 0  such that for every x € X
with IxIl > N we have 16 (x)l IxI™"< & . Tnen
for every x € X with Il xl > N

05 TA-DO Ix I IA NGO Ix I < € HA™") .

Thus A‘4¢ : X — X is asymptotic close to zero. Fur=-

N

ther, similarly as the proof of theorem 1.

Theorem 3. Let F: X — X Dbe a mapping of a Hilbert
space X into X such that, for every X € X , it has
the Gateaux derivative F’(x), F is Fréchet-differen-
tiable at 0, F(0) = 0 . Let PF’(x) be & normsl
mapping for every x € X and such that (PF%0) ,A)=
zmlhaltm=0,(PF(x)h,h) =0 for every xeX, x #0,
4 e X, where P 1is a linear mapping of X onto X he-
ving an inverse P, IPIl < (mﬂ IE (x)0)-7 .

Let € be an arbitrary positive number such that € < 7-
-I6°(0) |l , where G = E — PF . Then there exists a po-
sitive number 0" such that for any 4 € X . with Iyl s
£J(M-d)IPI~" , whered =lGT0)II+ € , the equa-
tion F(x) = 14  has at least one solution in the ball
D={xeX; Ixl&} -

Proof. Again set G(x)=x=-PF(x) for.xs')(.'rhe
mapping G : X — X is Gateaux-differentiable on X and
Fréchet-differentiable at ( . Moreover G'(x)=E - PF(x)
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for every X & X in the sense of Gateaux, G'cp)_p _
-PF(0) in the sense of Fréchet and G (0) <
16(0)1 £1-m <1, since

0<m & (PFC0)A, h)E I Pl IF(0)N & PALUFGON 1PN < 1

for every A€ X with 1Al =1 . Because x/:‘)‘('b NGOl S 4,

0. We have

the mapping G: X—>X 1is Lipschitzian on X with constant
one. Now choose a positive number € 8uch that £ <« 4 -
~§G“(0)ll . Then there exists J'> 0 such that G‘(x)-
-G (0) =G(0)x+w(0,x) , Where lw (0, XM < € § x|

1f Ixll< &7, Taking 0< o”< J°’, then for eﬁ'er] XeS,
where S = {x € X;Uxll=0"} we have that

NG (x £ HGX0)x I+l (0,5 M < IGOMIxU+€ Ixl = d x| = do”.

Define a mapping G: X— X by G(x) =G(x)+ P(y),
where a4 € X 1is an arbitrary (but fixed) element with
Iyd€ M-I P! . Let xeS,then 1G()I =
SIGOM+IPy < dd'+ 0°(1-d )= J". Thus G(s)e D,
1G(x)-F(x ) S %, - X, | for every x,, X, € D ama
G: D— X .According to Browder s theorem there exists

at least one x* € D  such that G (%X*) = x* . Henoe

" F(%*)= 4 , which completes the proof.

Theorem 4. Let F be a weakly continuous mapping of Hil-
bert space X into X such that F has the Fréchet deri-
vative st 0, F(0)= 0 and (P F'(O) h,h)zemini?,
(m>0),/ € X, where P, 1is a linear continuous mepping
of X onto X having an inverse. Let 2% be a number satis-
tying 0 < ¥ < 2mUBF(0)I"® | 1If € 1s an arbitrary
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positive number such that € < 1-1G’(0)l , where G=E-
~PF, P=1%P, , then there exists a positive number J" such
that for any 4 € X  with Iyl & o(1-(NG" O +ENI PR~
the equation F(x) = Y- has at least one solution in the
ball D={xe X; Ixl s o} .

Proof. Set G(x)= x-PF(x),P=®P . Then G(0) =0, G
1s Fréchet-differentisble at 0 and G 0)l <1 ., Choo-
se €>0 suchthat € < 1-1G*C0) 1 . Then there.
exists 0'> 0 such that if I x ll < O™ then G(x) =

= G/(0)x+@(0,x) , where lco(0,x) <& x| . Taking
0 < d"< d’, then for every X € D = we havellG (x)l<
<(IGON+€)d", Define G: X — X by G(x)=G(x)+ P(y),
xeX, 4 € X 1s an arbitrary (but fixed) element with

Iyl & (1-CIG'COI+ENUIPI"" ., Then for every x € D

we have that IG(x)I & IGM+ NP Kyl < o . Thus
IG(x)l < & for every X € D and G: D> D is
weakly continuous mapping of D into D . But every
bounded set in X is weakly compact and every convex closed
set in X 1is weakly closed. Hence according to Schauder’s
principle there existcat least one x*e& D  such that
x*=G (x*). Hence F(x*)= 14 , which completes the
proof.

3. Let X be & Hilbert space, ¥, Z  non-trivial subspa-
ces of X such that X 418 their direct sum, X = ¥ @ Z .

Denote by R,, B, the linear projection of X onto ¥, Z
respectively. Set #(X)= x+AF(x), g(x)= x+ AG(x),

where A: X = X is a line;r continuous mapping of X
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into X and F, G  are non-linear mappings of Y, Z into
X respectively.

Theorem 5 (on intersection). Let X = ¥ ® Z  and let
£:¥— X,g: Z—> X be defined as above, where F='Y—->)(J
G: Z—> X are Lipschitzians mappings with constants o, ,
respectively., Furthermore let F, G be linearly up-

%y

per bounded with bounds /3, , /3, respectively such that
E=LANBIBI+ANRI € 1 LIf (o, B l+a, IR 1) 1ANE,
£ 1, then the intersection f(¥) n g(Z) is non-void.

Proof. Put ¢ (x)=A(G(-EX)~ F(R x)) for eve-

ry X € X . Then for all X,, X, € X  there is

M (x,)-b(x ) £ NAI (16 (= B x,)-G(-B x, ) +
+NF(Rx, )~ F(Bx )£ HAIe, K Bx, - Bx, N+, I x, =

-Bx, D £ Y ICA T AREY RO Ix,-x, 0 elx-x1.

Thus the mapping ¢ : X —*X 1s Lipschitzian with constant
one. Under oml' assumptions, F, G  are linearly upper boun-
ded with constants /3, , /3, Tespectively. Therefore

(1) NF@ s 3, Kyl for every g€ ¥ withlylzgp, ,
(2) 1GINE B, Izl for every x € Z withlzlz2 @,
for some @,,® > 0. Put @ =mac(p,,@©, ); then (1),(2)
are fulfilled for every 4 € Y with lyll 2 @ and every
zeZ wth lzl 2@. PtKo={yeY, lyl£p},
Ne={zeZ lxN€p}. Since F, G are Lipschitzians on Y,
Z respectively, then there exist positive numbers K, , K,
such that IF(y) IS K,, IG=IN S K;  for a11 4 € Kp»
z e 'O'P respectively (cf.[7], § 1). Set K= max (K4, K,),
N = max (B, AAI IR, I, B, HAN N B 1), @, = max (20, IANK/(1-N))
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Ko=1xeX, IxI£0, 3, Sp={xeX,Ixll=g ?. It Tor x =
=}”,X+gxe X with Ixl = ©, there 1s also IB x| 2 p,

1B x I 2 @, then
Io xS NANCHF(RXII+IGERBXIM) S ellxl€ Ixl.

If for x|l & @, one of the inequalities / @,x Iz o
IBx I 2 @ 1s not fulfilled (for instance the first),
then P (XINEHNAIK+ NIxll £ il . Hence for
every X € 5;,,9 there 18 1 ¢(x )l € ©, . Therefore
d)(SPo e KP‘ . Accérding to Browder s theorem, the map-
ping ¢ KP, —» X has at least one point x* e Ko, such
that & (X*) = Xx*. Hence B x*+ B x*= A(G(-B x*)-F(Bx*)
and £ (R x¥*) = g (- x* ) . This concludes the

0

proof.
The "intersection problem" was studied for completely

continuous and weakly continuous mappings in [2],[10] respec-

tively. For A one may set either
1) A= E,A= QA E and for F some Uryhson operator, or
2)%7‘)(:/'!((5,#) x(t)dt and for F some operator
of Neuwgki,j.
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