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»

UNIVERSAL GATEGORIES

Véra TRNKOVA, Praha
W@

In [9], A. Pultr defined universal categories as follows: &
category K is called universal if every small category is
isomorphic with a full subcategory of K . It is easy to see
that such universal catego;ieo do exist. The problems solved
in [9],[10],[12], concern further properties of universal
categories, namely where from usual categories are univer-
sal.

The notion of a universal category given above requires
the existence of & full embedding for every small category.
Thus & universal category in this sense may be called uni-
versal for all small categories. But it is natural to consi~
der &lso other "systems™ of categories, for example to consi~
der a category such that every (not necessarily small) cate~-
gory may be fully embedded in it. x)

In the present paper some metatheorems are given, from
which there follow these results:

There exists a category in which every category may be fully
embedded. )

There exists a category with a singleton in which every ca~
tegory with a singleton may be fully embedded.

x) The question whether there exists such a category also for—

mulated A. Pultr in a conversation.
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There exists an additive category in which every additive ca~
tegor.y may be fully additively embedded.

There exists a concrete category in which every conecrete ca-
tegory may be fully embedded.

‘There exists @ good bizategory x)

in which every good bice~
tegory may be fully embedded by an*isofunctor which preserves
injections and projections.

The present paper is written in the set-theory with the
Bernays-Godel axioms,[4]. Although the paper is not writtenm
formally (in some details even not quite precisely) these a-

xioms are consistently respected.

I. Preliminaries.

All needed definitions (category, functor and so on) are
given in [7].
1. Notation: If K is a category, denote by K7 the class
of all its objects,by K™ the class of all its morphisms.
It a, &€ K7, genote by H, (2,4) the set of all mo-
rphisms of K froma to &.If « € He (@, 8),put & = a,
X =l ta, b, ceK” setla,b), e He)
then the composition of o and /3 will be denoted by oc .3«
It K 1s a category such that K7 1is a set, then K will
be called smell, We shall use the symbol K’ c K to deno-
te that K’ 4s a subcategory of K; and the symbol K'g K
to denote that K 1s & full subcategory =’ o K .

- s o v 4w an e

x) Por the definition of a good bicategory see section V.8 of
the_present paper.

xx) We recall that a suboategory K’ of K s called full if
i&.ﬁf’.’.‘t" HeCa, &) forall a, e K7 .



We shall say that a category K s one-point (or one-ob~
Ject) if the classes K” , K™ have exactly one element (or
if K% has exactly one element).
Let K be a category. We recall that a ¢ K7 4s cal~

led & singleton (or cosingleton) of K if, for every 4 c &',
He (&,a) (or Hy (a,.4-)) contains exactly one element
énd HK(a,,Jr).-ﬁﬁ (or Hy (&,a) # @ respectively).
If § is a functor from a category K to H, we shall wri-
te §: K—=H; if K, H aresuall then J 1o called
small. If § : K- H, ¥: H—> M are functors, then the
composition will be denoted by $ - ¥ or S ¥ . If

$: K> H 1s a functor, « € KU K™  then we shall
write (<) @ instead of the more usual & ().

All considered functors are covariant, unless otherwise ex-
pressly stated.

A one~to-one functor of a category into a category will be
called an isofunctor into or an embedding. An embedding onto
a full subcategory will be called & full embedding. If K’
is a subcategory of K , then the inclusion functor L ¢ K-> K .
18 defined by (X)L =a for every € K7 u K'™ .

2, Convenmtion: If K is a category, o € K™ then « is
always @ triple, the first member of which is & , and the
third member 18 & . Thus if K, , K, are categories such
that K" A Ky = & | thenalso K™ A K™ = 0.

3. Convention and notation: As noted before, the present pa-
per is written in the Bernays-Godel set-theory,[4]. Thus we
distinguish between sets and classes and all -xio-g given in
[4) are sssumed. A class which is_not a set is usually called

& proper class. The axiom of choice for classes may be for-
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mulated as followa: let X be a class, R an equivalence
on X ; then there exists a choice-class Y (i.e. Y c X;
it y,y’eY, a4 Ray', then ¢y = ¢ ; and for every

X € X  there exists a y € Y such that x Rz ).
It is used often in this form; for example the existence of
a skeleton of a category requires it. But, as shown in [4],
this form is equivalent with the following one: every class
X may be well ordered (by < ) such that for every a € X
the class {lre X3 &+ < a } is a set (the proof requires
the axiom D of [4]). The last form will also be used often
)

in the present paper X/ and such a well order will be called
an 0, -order for X (also when X 1is a set).

The properties V and W considered in the present paper
are always supposed to be given by a normal formula,[4].

Let &, /4 be sets; then ( &,/ > denotes the correspon-
ding ordered couple. If /k, gy are classes, we shall use
the symbol [ R, #+ 1 for the ordered couple and it may be
interpreted for example as L.k, o ] =k < {0} v h <{1}.
If £ is a mapping, we shall write (x)f  instead of more
usual f(X). Every reflexive and transitive (or also anti-
symmetric) relation will be called a quasi-order (or partial
order, respectively).

4. Definitions: Let T be an 0 -ordered class (by < ). A
collection { &, ; o € T} of small categories will be

x) Metatheorems of the present paper are proved without using
the axiom of choice: The axiom of choice is needed for appli-

cations only.
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called a monotone system of small categories if ,k,‘_ is a
full subcategory of R, whenever o« < o’ . A category &
will be called the union of a monotone system { Ry ; o € T§
of small categories and denoted bydg & o it kT =
=°&)T &; and every R, is a full subcategory of R . E-
vidently & is small if T 4is a set.

Let T bve an 0, -ordered class (by < ). Let

(A&, ;ce T3, {8 ; « €T} be monotone systems of emall ce-
tegories. Let & : A, —» A, Dbe a functor such that for '
o~ h":’ - %
AL;‘,: b —h,, kb:’ + & —> k_, ere inclusion func-

every o < o’ ‘there is ¢ LA , , where
tors. Then { ¢ ; o € T § will be called & monotone sys-
tem of small functors. A functor ¢ :.f —» R , where

M= M Ay R (J oK ,will be called the union of

{95 « €T} anddenoted by y = _U_¢, , if for e-
very o € I there is L‘k’ Y= g - "‘L“ , Where AZ‘(:
M, —+h, "t sk — &k are inclusion functors.

5. Definitions: A couple (£, X > will be called a gemi~
apalgan (of small categories) if X is a non-empty set of
small categories and £ 1is a full subcategory of each

ke X .

A semiamalgam € £, X > will be called an apslgam if

A n My = L7 whenever by ke K, k£ Kk, .

An amalgam £, X ) will be called an unglueing of a se-
riamalgam (£, X’) if there exists a one-to-one mapping
f of the set X’ onto ' such that to each & € X’ the-
re exists an isofunctor of & onto (R)f , which is iden-
tical on £ .
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Let <.£,% ) be an smalgem. Every ggall category K such
that every £ € ¥ 4s a full subcategory of K , will be
called a £illing of the smalgem (.£, ¥ ) -

II. Categorial metatheorem

1. Metadefinition: Let V be & property of categories. We
shall say that & semiamalgam (£, X > bas V 1f £ has
V and all ke have V . We shall say that V i emal-
£amic if every smalgam with V  has a f£illing with V .
Examples: )

In [11] 1t ie proved that every amalgam £, X ) has a f11-
ling K such that Kr'&ij L7 .

a) The property Y, of being & category is smalgamic.

b) Let &k be a one-point ‘category, a e & . Clearly, the
following property V; (or Vi e \4" ) 1s amalga-
mic: to contein L as a full subcategory such that o 1is
a singleton (or & cosingleton or a null object, respectively).
c) It is emsy to see that the following property |, 1s a-
malgemic: a category & has V, if<and only if

cand Hy(a,b-) & 1 ftor every a, & &€ K7 . (1f
(4,X%> 1s an smalgem with V, , K its filling, iden-
tify all morphisms (w, » such that (‘Z’n < ’ Fz- 7.)
a) Let 'k be a small-categary, let S , 5  be two classes
of cardinal numbers. Evidently the following property V,

is n-lmi.c:'- category & has V, if and only if it con-
tains & s a full subcategory, and if a e ke, b e k-X°
then caxd Hy (a,4)eB, card H, (4,2)¢ 5 .

v



e) Let _h be a one-point category. Clearly, the following
property |/ is amalgamic: a category .& has V, if and
only if it contains j{, as a full subcategory and is con-
nectea ¥,

2, Metedefipnition: Let V be a property of categories. We
shall say that |V hap a sgall character if every category
K has V if and only if K 1is a union of a monotone

system of small categories with V.

Exagples:

a) The property V, of being a category is of small cha~
racter. For, if K is a category, take some (), ~order <
for the class K% and let 4, be the full subcategory
of K such that /k,: = {8 K”; & <a}. Then evi-
dently K= U & and {Jow',ds K®* % 1is a mo-

aeK” d

notone system of small categories.

b) It is easy to see that the properties Y, to ¥ from
examples 1lb) to d)-are of small character.

¢) Let & be a one-point category. It will now be proved
that the property \, , of containing A& as a full subca-
tegory and being connected, a&lso is of small character. Evi-
dently the union of & monotone system of small categories
with V. hae V, . Now let K be & category with V, ; we
attempt to express it as the union of & system with the re-
quired properties. For every small full subcategory -A of
K choose & small full connected subcategory For K ,

'x) A category 4 1is called connected if for every a,.f& K&
there exist Cq,-:.y ¢, € k° such that ¢, = a, ¢, = &,
Hy (60 Ce U He oy, ,e; )P for b= 4,0, m=1.
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which contains & (this is possible: for any a, & e h”

choose c* et o K& such that ¢*? - a 5
L !
’

a
G = b g U Rk, Gt v g, ena

Yoo at a,¥ .
put A -O’%” {¢75..0 c,n&/’} ; it 1s easy to see

that o 1s connected). Now let < be an 0, -order for
the class K7 — Er, let Q, be the first element. Put
ke, = & 5 1t a€K”, a > a,,denote by o the

full subcategory of K such that k%= {£e K73 b<ca}v

af ~
v, #, , smaput R, = # . Then evidently K=

. s
sa‘UK, &, , ad { &, ;5 o € K7} has the required pro-

perties.

3. Metadefinition: I;et V  be a property of categories. Let
% Dbe a small category with V. We shall say that \ 4ig
J =invariant if it satisfies the following conditions:

s) every category with V contains J& as a full subcatego-
ry;

b) if a small category -k has V and there exists an iso-
functor of .k onto a category ., which is identical on
R,then/%has V. ‘

Motadefinition: Let V be a property of categories. We shall
denote by V the following property of categories: a cate-
gory has V\ if and only if it may be fully embedded into &
category with V .

Examples: Met V, to V, be properties described in 1.

a) The property \, is evidently T ~-invariant, where .Jo
tg wn empty category. Evidently \, = V,, .
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b) Every category with a singleton (or cosingleton or a sys-
tem of null morphisms) has V; (or V) or \{," respecti-
vely).

¢) Now prove that every connected category has \—/,; . Let

K be a connected category; one may suppose that -2 N

AK =¢@. Let H be the following category: H” = Ie"'g K%,
& , K are full subcategories of H , and for a e B,
A € K there is H,(a,&)={<a,8,4 >}, H(l:a) =@
Evidently H has V, .

4. Categorial Metatheorem: Let & be a small category. Let
V be an amalgamic & =invariant property of. small charac-
ter. Then there exists a category U with property V such
that every category K with V  may be fully embedded in
U . Moreover, if K has V , then this embedding is iden-
tical on & .

Corollaries: Using the properties V, to V, described in
the examples, it is easy to see that

a) thefe exists a category in which every category may be
fully embedded.

b) There exists a category with a singleton (or cosingleton
or null object) in which every category with a singleton (or
cosingleton or a system of null morphisms respectively) may
be fully embedded.

¢) There exists a connected category in which every connect-
ed category may be fully embedded. ‘

d) There exists a qussi-ordered class in which every quasi-
ordered class may be fully embedded.

There exists a partially ordered class in which every



partiully ordered class may be fully embedded.

e) Assume given a semigroup =  with & unit. Then there
exists a category U amd q € U such that a is a ge-
nerator X’ (or cogenerstor) of U , H, (a,a) 1is iso-
morphic to = , and that every category K  containing
a generator (or cogenerator, respestively) £~ € K with

He (&, &) 1s isomorphic to = , may be fully embedded
in U . (Cf Appendix II a) of the present paper.)

III. Proof of the Metatheorem -

In this section, & 1s a small category, V 1s an smalge-
mic & -1nvar;ant property of small character.

1. Lemma: Let 4, A‘ £ be small categories with V , let
A be & full subcategory of A°, let ¢y:.h n 4 ve
an lsofunctor identical on & . Then there exists a catego-
ry £ with V and an isofunctor g's W onte £’, which
extends ¢ ; furthermore £/ is a full subcategory of .£°.
Proof: Evidently there exists a category £’ and an isofunc-
tr ¢'s A mb, g , which extends ¢ . Also £
has V , since &’ ie 1dentical on A .

2. Lempa: Let (£, X’> ve a semiamalgam with V, k & X'

Then there exists its unglueing  .£, X ) with property V
snd such that k ¢ X .

Progf: This is evident.

x) We recall that @, 1s a generator of a category.fi if
is such that, whenever (. ,¥ e H, (2, ¢), w s+ », then
there exists w e H, (a,, &) with & w & o » .

D ——

- 152-



3. Notation: Let ¢ be a cardinal number, .f& and _fo
small categories. The symbol card & \ . £ c 1s to
mean that 4. is a full subcategory of fe, card 4 -
-h7Ss « and for a € k7~ A7, b € k% there is
carol Hy (a, )& ct, card Hy (by2) & « . '

4. Lempa: Let £ be a small category with property V,
let ¢t be a positive cardinal. Then there exists a semi-
smalgan (£, € > with V and such that:

1) cardd AN L 2 a for ke K,

2) it A is a small category with V and card A \ L=
£

, then there exist & € X and an isofunctor
g: onfo, g identical on £ .
Broof: Let K be the class of all small categories -fe
with property V and such that caxd R\ £ £ & . Let
@ be the following relation on K: &, o 4k, if ana
only if there exists an isofunctor of 4, onto 4, identi-
cal on £ ., Evidently @ 1is an equivalence on K ; deno~
te by H{  some choice-class. Now it is sufficient to show _
that X 1s a set. Let M be a set, M n £7= @, card M« cx;
set S” =Mu £7, For every <a,&>e S = 57 let
H(a,A) be a set of some triples {a,a, £ > such
that caxdl H (a, &) = « and that for (a, & > €
€ L7 £ there 1is Hl (a,&)c H(a,& ); set S™=

=(q,,b‘:‘)"¢ ¢r 5o H(a, &), For every / € X choose some one-to-

oné mapping g, Oof the set AU A™ " into the set S7u

U S™ with the following properties: if o« € L7 v L™,
4 o

then ()yy = x ; if a € A" - L7  then

(a)g, € M;if x € A™ , then (®)¢fy, € H (L)Y, » Cc?’%)-

- 153~



Evidently one may define a composition on the set
h)g v (h™)g, o as to form a category (denote it

by & ), and g : - — B will then be an isofunc-
torof o onto F.If for 4, 4 & K there is H =
« & , then S g‘:" is an isofunctor of .. onto f
which is identical on £ , and therefore ./ = .fe . Now
1t 1s easy to see that the _h ‘s, where 4 varies over
X , form a set.

5. Lapma: Let <t be & positive cardinal number, let
{4£,2% > be an amalgam with property V satisfying 1)
and 2) from Lemna 4. Let A’ be & small category with pro-
perty V, Jh its full subcategory with property V,
g:h o9, ¢  an isofunctor identical on % and
card W\ J & cx . Then there exists an isofunctor of
4' onto some: .k € X  which extends ¢ -

Eroof: This follows easily from Lemma 1.

6. Lepmgt Let {f, 73 » €(S,<)} be » monotone sys-
tem of small categories. Then there exists an order—preser-
ving mapping + : S — T  into the clsss T of all car-
dinal numbers such that:

1) (»,)¢ = 0 , where H, 1s the first element of S;
2) for every » €S with 5 5> A&, there is

sard (M, N\ U b ) & (B)F .

Proof: Put (b0t < 0. I » €S, » &4, put
KL =2+ m , vhere rﬁ%(t)#, M =

- AU card (H, (a, ) Hy &,aN} .
ao bl bre - U] { by K1 7Y T
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Then evidently f has the required properties.

7. Comptruction of UU : Let T  be the class of all cardi-
nal numbers. For oc € T denote by T, the set of all
3 €T less than x . Let R eT and let { Ae,

M 6 T;_ $ be a monotone system of small categories with
property V sueh that:
L) &, = R
B) if - > 0 | then:

it 4’ is a small category with property V, & its
full subcategory with property V , ¢ : . h — U A&, an

M <an W

M < N

isofunctor of 4 onto a full subcategary of U e, _  which

is identical on R and if saxd A '\ £v & M+ , then
there exists an isofunctor of .’ onto a full subcategory
of K, , which extends & .

Let @/ follow to 4 . We will comstruct 4o eo that

{ R, ;) m ¢ T‘I $ is a monotone system of small catege-
ries with V satisfying A) and B). Put & -ﬂyﬁ Ay, -

For every full subcategory £ of & with property V choo=
se some smalgam (£, H, ) satisfying 1) end 2) from
Leuma 4, where one puts oz = R . Let (.2, ¥, > be

an unglueing of the semiamelgam { £, ¥, v { AR % > such
that & e ¥, , let K, be its filling with property V.
Denote by &  the set of all K, ( £ varies over all full
subcategories of 4 with property V ). Let { k, K> be
an unglueing of the semiamalgam < R, X >, Let /kﬂ be a
£111ing with V of { &k, X > .
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Now it 1s easy to see that { R, ; #m e T,., } e
monotone system of small categories with V satisfying
A). Now prove B). It ies sufficient to prove that if A‘, .4
are small categories with property V, eaxd LN B LR,

g }b—"k:“gﬂ/ﬁ—“ an isofunctor onto a full suboatego-
ry of & 1dentical on & , then there exists an isefunc-
tor 4 of 4 onto a full subcategory of g which ex-
tends & . To prove this assertion, first put £ = Ch)gy.
Then, using Lemma 5, there exist £'€ X, and an 1so-
fancter '+ A’ 2% g/ guch that ¥/, = &. Then
there exist L7 ¢ ¥, and an isofunctor ¢“: £ omig, 2
which is identical en £, consequently " ‘—’”)/h = ¢.

Denote by i, * A£” — K, the inclusion functar onto a
full subcategory of K, ; let Ke X, let 7 : K‘zﬂ, K

i)o an isofunctor which is identical on &k (and consequent-
ly also on £/ ), and denote by ( ¢+ K — k,, the inclu-
sion functor onté a full subcategory of Jv, . Put y = 9"-
+g“ ¢ L. % - L . Evidently v 1s an isofunctor onto a
full subcategory of Ry and ()¢9, T L =() Y
for . € 4L . This concludes the proof of B).

By transfinite induction one obtains & monotone systenm

{4y, ym e T} of small categories with V esatisfying A)

and B). Put U = U .k, . Then evidently U has V.

8. Proposition: Let H be a category with property V -
Then there exists an isofunctor of H onto a full subcate~
gory of U which is identical on .k .



Proof: Using Lemma 6, ONe may suppose that H =/uL.{_, My s

where {4f1,; 5 € T/} 1is a monotone system of small ca-

tegories with property V, T’/ 4is a subclass of the
class T of all cardinal numbers, O e T/, A, = & em
calcd.(h,,\thb/h%)ib for O< » € T’. Now it ie

essy to construct an isofunctor ¢ of H onto a full sub-

eategory of U, Put =Aeur'g” , Where ¢, is the

following isofunctor of ., onto & full subcategory of K, : '
o, : = &k —kh = 4, 1s 4dentical; for » € T/,
A>0,pat 9= U, g ,n'=h, A= U, by, am

tch t<cHh
wse B) from the construction of U .

The proof of Metatheorem is complete. °

IV. Metatheorem for additive categories

l, We recall the well-known concepts of additive categories
and related notions:

Definition: Let K be a category, + o partial addition

on K™ such that: 4f & + (3 1is defined, then & =

-5, % - B, every [He (2,80, %, (4 4))4s an
abelian group, and if w e H, (¢, a),«x,[@€ H(a,6), V€ H 8, 2),
then - (ax+fB3)V=n.ax.» +w /3.3 . Ve shall say
that then [ K ,+ ] 4s an a -category x) « Moreover, if

x) In[8), a -categories are called preadditive categories.
In the present paper the term Q@ -category was chosen for
the sake of amalogies with the following parts of the pa~
per.
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every pair of objects o K has a biprodust *) in K ,then
LK ,+ ] will be called an additive category. For an 2 -
category A=L[K, +] set |Al = K3y K will be also
called the underlying category of A . We shall say that A
is small whenever K is small,
2, Definition: Let A, A’ be a-categories. @ will
be called an a-functor of A inte A" if it is a functor
of Al into |A’| euch that (x +B3)d = ()P + (B
whenever o + (3  is defined. Moreover if & is an iso-
functor, then it will be called an Q~isofunctor or Q -
embedding. If $ is an isofunctor of [Al onto a full sub-
category of |A’l , then it will be called a full q-isofune-
tor or & full Q -embedding. Let A ,A’ be a-catego-
ries. We shall say that A is an Q@ -subcategory of A’ if
JAl « | Al and the inclusion-functor is qQ —embedding. Mo~
reover if it is & full Q -embedding, then A will be cal-
led a full Q -subcategory of A’ .
3+ Definition: A couple ( £ ,X ) will be called an a4 -
senismalgam if X is a non-empty set of small g -catego-
ries and £ is a full @ -suboategory of all e X .
An q -semiamalgem { £,X > will be called an a-a
mlgan if |k, (7~ 1k, 17 = 1217 whenever -k, ,
Ry € K, koy+ Ry -

x) Ly {e,, 9, , L, , 9,3 ) 1s called a biproduct of ob-
Jects a,, @, in Qa-category LK ,+] 1 (; €

eHK(a,,-,lr), ﬁ:":HK <‘e’7‘a'.i,)) 4""412 and

L&ﬂ",i-‘ea_‘: y (v 1,20, w1, L, = €y
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An Qq-asmalgem £, X ) will be called an @ -unglueing
of an Q-semiamalgam < £, /) if there exists a ome-
to-one mapping f of the set X’ onto X such that for
every & € K’ there exists an @ -isofunctor of R onto
(k)¢ | which is identical on £ .
Let (£, X > be an a -amalgam. A small Q-category K
such that every & € X 1is a full Q-subcategory of K,
will be called an Q-filling of the a-smalgam { .2 , A,
4. In snalogy with the notions of a monotone system of
snall categories and its union, one may define thp corres-
ponding a-notions of a monotone system of small Q-cate-
gories and its union.
In analogy with metanotions of amalgamic property, E-invu-'
riant property, property with small character, one may defi-
ne the corresponding @ -metanotions, of @ -amalgamic pro-
perty, & - a-inveriant property (where R is a small

Q@ =category) and property of Q -small character. If V is
a property of Q -categories, the definitiom of V 1s also
evident.
5. Matatheorem: Let A&  be a small Qa -category, Y an

a =-smalgamic and jz.. = @ =invariant property of an aq =~
small character. Then there exists an q -category U with
V such that every a-category with V. may be fully
Q -embedded in U . Moreover, for Q -categories with V
this @ -embedding is identical on A .
6. In Appendix II b) of the present paper a proof of the

assertion is sketched that the property of being an A4 -ca-
tegory is a ~amalgamic. Evidently it is of Q -small cha-
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racter. Thus, using the fact that every Q -category may be

fully Q -embedded in an additive category, [L1], we have
the following results:
a) There exists an additive category in which every e -cate-
gory may be fully Qq =—embedded.
b) There exists an additive category L such that for eve-
ry a, e lUI”, H, (a,t) is a torsion group (or
a finite gz-oup), and with the property that every 4 -cate-
gory A with H,(a,4 ) is a torsion group (or a finite
group, respectigely) for every a ,f-¢ /Al%  may be
fully Q@ -embedded in U , (The proof is sketched in Appen=-
dix II c),;).)
¢) There exists an additive eategory U with a generator
(or a cogenerator) ¢ e IUIY such that H, (¢, c) 1is
isomorphic with a given ring with unit, and if A is any
Q@ -category with a generator (or a cogenerator, respecti-
vely) a € |Al” such that the rings H, (c,c) and
Hy, (a,a ) are isomorphic, then A may be fully @ -
embedded in U . The a —~embedding extends the ring-iso-
morphism of H, (d,a«) onto H, (e, ¢ ) . (The
proof is sketched in Appendix II 'd),e).)
7. Note: It can be shown that the situation is quite ana-
loguous if the sets of morphisms from an object to an ob~
Jjeet are not necessarily abelian groups but universal al-
gebras of é given type and satisfy a given set of equali-
ties (of course, the operations must be distributive with
respect to the composition of morphisms).
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8. Proof of the Metatheorem for 4 -categories: This will

only be sketched. Let & be a small 'a-category, let V

be an Q -amalgamic & - Q@ -invariant property of @ -small
character. The lemmas analogous to Lemmas III.l and IITI.2
for a=categories and a-functors are easily formulated

and proved. We shall now formulate and prove the analogue

to III.3 and IIT.4:

Notation: Let ¢t be a cardinal number, &,/ small -
categories. Then caxd & \ #r £ o  denotes that A .
is a full Q -subcategory of R and card |bkINIhl s .
Lemma: Let £ be a small Q -category with V, let c& be
a positive cardinal. Then there exists an Q -semiamalgam

{ £,%X > with V such that:

1)1t Ak € X, then card R N L £ x ;

2) if /o is a small Q ~category with V and card Ao \
NA £ o, then there exist a # € X and an a-iso~
functor ¢ : A on%e,  fo  which is 1dentical on £ .
Proof: Let /K’ be the class of all small @ -categories .fo
with V  such that caxd R N 4L £ <« , let K={lkl;
I e K’} . Let @ be the following relation on K :

(&, I o [&,] 1f and only if there exists an isofunctor of
|#,| onto |k,| which 1s identical on (L[ . Denote by ¥
some choice~class. In the proof of Lemma III.4 it is pro-
ved that ¥ is a set. For every 4 € ¥ denote by K s
the set of all Q ~categories .k such that ./ is an

a =-subcategory of & and |k | = &, put 5C’=’kt‘Jx Ky, »

The Q-semiamalgam ¢ £ , X‘) has the required proper-
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ties, concluding the proof of the lemma,

Now it 1e easy to complete the proof of the Metatheorem
for @-categories using the analogues to I1I.6,1II,7,III,
8; this is left to the reader.

V. Bicategorial metatheorem
1. We recall the well-known notion of bicategory,[5], and
of related notions: | '
Degipition: Let K be a category, I, P its subcatego-
ries such that
1) I™ A Pp™ is the class of all isomorphisms of K;
2) each L € 1™ 18 a monomorphism of K ;

each s € P™  is an epimorphism of K;
3) to every o € K™ there exist L € I™ , st e P™
such that o0 = . L ;
41t L, e I™, 7, n’e P™ have r-L = ar’- ',
thenn there exists an isomorphism (© of K such that
remw'op, T R
Then [K ,I, P] 1is termed a ¢ -category x); it is
termed small if K is small. Let B =[K ,I,P] be a
4 -category, set | Bl = K ,lz= I™, Py = P™ |, Thea K
will be called also an underlying category of 73, Iz the
class of all injections of /3, F, the class of all pro-
Jections of 3 .
x) The term 0 -category instead of bicategory, was chosen
for the sake of analogies with other parts of the present

paper.

e e en e cnan csene®
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2.Definition: Let 73 , B’ be 4 -categories. A functor P
of |B| into |B'| 1s called a £ -functor if (In)3 c Ly,
(Pa)d c Pp,. d will be called a 4 -isofunctor of J3

into B’ 1if it is an isofunctor of 13| into |B’| ana
Iy n(1BM)§ = (1509, B A(IBI™)G =(B)F . If, moreover,
® 1s an igofunctor of |B| onto a full subcategory of
[B] , then it will be called a full .{ -isofunctor or a full
4 =-embedding. Let cﬁ, B’ ve Ar-categories. We shall
say that 53 is a (full) {r -subcategory of B’ if |Bl c
c | Rl anmd the inclusion functor is a (full) .§ -embedding.
3. The definitions of a -{r -semiamalgam and its & -unglue-
ing, and of a .- -amalgam and its £--filling are evident.-
The definition of a monotone system of ¢ -=categories, a
monotone system of .{~ -—embeddings and their union is evi-
dent. I & is a small Ar -category, then the metadefini-
tions of 4 -smalgamic, & - & -invariant property of 4~
small character are evident. It is also evident that the
following metatheorem holds: ‘

Metatheorem: Let & be a small . -category. Let V be a
A -amalgamic, /& - & -invariant property of .& -emall cha-
racter. Then there exists a .{r-category U with property
\V such that every Ar -category with property V may be
fully [r -embedded in it; this Ar -embedding is identical
on & .

4. However, as shown in the Appendix, II f), this metatheo-
rem is not useful, because the property of being a f--cate-
gory is not {r -amalgamic. (The Qquestion as to whether there
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exists a fF-category in which every .{ -category may be
fully {r —embedded remains open.) We shall give a more gene-
ral metatheorem, which has more satisfactory applications.
5. Metadefinition: Let W be a property of -4 -embeddings.
It will be said that W 4is pmopotopically additive if the
union of every monotone system of .{--embeddings with W
has W . It will be said that W is categorjal if

a) every A -isofunctor onto has W and

b) the composition of two £~ —embeddings with W has W.
6. Matadefinition: Let V be a property of Ar -categories,
W a pr&perty of 4 -embeddings. It will be said that V
has & - -smal)l W -character if a {r-category K has V
if and only if K is the union of a monotone system

{*«‘ 5% € T} of small & -categories with |/ such that
for any o < «’ the inclusion .4 -functor t.:l: A, —>k,
has W .

It will be said that V  ia & -agalgamic with respect to
W if it has the following property: if (£, X > is a
Ar -smslgem with V  sueh that the inclusion {r-functor
Wit >k bas W for every &k e X , then there
exists its { -rilling K with V such that for every
R e X the inclusion {r -functor -Cb: 4 —> K nas W,
7. Metstheoren for . —categories: Let W be a catego-
rial property of .0 -embeddings. Let .k be a small & -
category. Let V be a property of .0~ -categories, which is
& - & -invariant, {r -smmlgamic with respect to W and
is of {r -small W =-character. Then there exists a -f -ca~-
tegory with V 1in which every 4 -category with | nmay
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be fully .{r -embedded. The ¢~ ~embedding is identical on
& , and hes W whenever W is monotonically additive.
Proof is analoguous to that of Metatheorem V.3 and there-
fore it is ommitted.

8. Defipition: Let £ be a full .{ -subcategory of R . It
will be said that £ is a good . -subcategory of e if
it has the following property: If <« € & ™ and ei-
ther ﬁ—e 1£19  or (?o" 6 | £17 , then there exist
me R , L el suchthat «c =JT- L and e l£I7,

A Ar-category K will be termed a good A~ —category if
Ke U 4, , where {4, ; o« € T § is a monotone system

of small _{~ -categories such that for any o < ao',lgcis‘
a good A -subcategory of 4., °

9. Let W . be the following property of - -embeddings:

L : £ —y f has W 1if and only if 1t is a & -embed~-
ding onto a good £ -subcategory of R . In Appendix,II g)
it is shown that W is categorial and monotonically addi-
tive. Let V be the property of being a good _»5' -categary.
Then \/ is of A~ -small W =character; this follows imme-
diately from the definition. V is & -invariant, where
& 1is an empty A& -category. In Appendix, II h) it is
shown that V is .{r -amalgamic with respect to W . Thus
we have the following result:
Corollary to the Metatheorem for .- —categories:

There exists a good .- -category in which every good & -
category may be fully _{- —embedded. The .{- -embedding is
onto a good Ar -subcategory.
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10, Now we give some conditions for a . —category to be

a good 4 -category.

Lenma 1: A & -category dual to a good & -category is it-
self & good Ar —category.

Proof: This follows immediately from the definition of a
good & =category.

Lemme 2: A {r-category is a good Ar-category if and only
if its skeleton is a good & -category.

Proof: Let B be s Mr-catezory, S be its skeleton. For
every @ & |BI|” choose an isomorphism 6, of B such
that E;.; a,?:s ISI” . Let " : B~> S bea
A ~tunctor such that (@)= & , (W)l = 0" - 6
Ir B is a good A -category, then B - y‘r'b;‘ , where

{%, 3 « € T } 1s a monotone system of small & -cate-
gories such that &y 1s a good Ar -subcategory of &,

whenever oo < o¢’. Put 6, = (4 ) " . Then evidently

S "L‘J_r Ay and {A 3 K € T} ‘is & monotone sys-
tem of small {” -categories, which has the required proper-
ty. Consequently S 1is & good ¢ -category. Conversely, if
S be a good Ar -category, we shall prove that B is good.

Then S.dg_/,‘,'horc {45 &« € T 3 1is a monotone

system of small Ar -categories such that 4, 1is a good
Ar -subcategory of 4., Whenever o < o ‘. The property
of being a A -category is of _& -small character, as

shown in Appendix, II 1). Consequently B = /3'2‘12 4, ; where

{%,3 B € Z } 1s a monotone system of small A -cate-
gories. For every 8 € Z denote by o5 the smallest
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o €T such that (zh;,) I 1is a 4 -subcategory of 4, . Let

now 0, be the full 0 -subcategery of B such that 165 17=

=I5, 19u !kﬁl’. Then evidently B = U £  and the
system {4, ; A€ Z7 has all the required properties.
We recall the well-known definition:
Definition, A £~ -category J3 1s termed well-powered (or
co-well-pewered) if for every @ € /B (%  there exists a
set L, c Iz (or B c B ) such that, fer every c €
€L,T=a, lor e B, W =a ) there exists an
L'eJ, (e or'e &, ) and an isomorphism 6 such that
L=6-L (e #r=m"6 respectively).

Legma 3¢ 73 1s ® good .U -category if and enly if it is
well-powered and co-well-powered.

Proof: Let B be a geod & -category; let /3 EacLer’Q'c , Where
{4 , xe T ? is a monotone system of small & -categories
such that, fer & < oc’, 4 1is a good O -subcategery

of U, . Let a€clBI”. Choose o € T such that @ €
€14, 17; let J be the class of all « e 13,,?(,5 a . Sin-
ce &, 1s a good A -subcategery of J3 , each ccc J may
be expressed as (. =0 .> ,where 66 Pa, »e ffa,ﬁi'e 1417
but then 6 mst be an isemerphism. Consequently J3 is
well-powered. Analegously it may be proved that J3 is ce-
well=-powered,

Conversely, let /3 be a well-powered corwell-pow;red

A -category. Let ¥ be its skeletanWe shall prove that
Y is good. If 5 4s a small full subcategery of /¢!,

denote by 5 the smallest good .fr -subcategary of & such
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that |1 51 D> A, % is a small . -category. Indeed,
put A, = A7 ; for m odd denete by A, the set
of ell a &Y% such that there exists L € I, with
T «a, T €A,_, 5 for m evendenote by A,
the set of all a € I/ such that there exists a
mePFR with T e=a FTeA, _, ;5 let 5 be

\ od
® full _{~ -subcategory of & such that [ 5 | = L‘J"Am_ .

n

Ir {A,3 « € T} is a monotone system of small catego-
ries such that I‘JI=¢%JT Ao > them {H,  ; ox € T}
has the required properties.

1l. Now we ahw; using Lemnas 1 to 3 , that mest of the
usual bicategories are good & -categories.

Let E,, Dbe the category of all sets and all their
mappings. Let & : E, , — E, . be a functer, co-
variant (er contravariant) such that
(X) for every @ € E:'M‘ the class { & ¢ E]  ;

()P = a? is 8 set.

It acE,, «c E™ denote (@)% by af
amd (@) by «%.

One may then define the following category gé x,

x) The definition of the category E? was given by
A. Pultr and Z. Hedrlin.
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| E|7 1s the class of all couples S @, X > , where
@6 lEn,l” xca?; Hy (<a, x>,<a’, x'>) 18 the set
of all a*= <<a,x) «,<a’,x’>> , where o« : @ —>a
is » napping such that (x)x? = x’ (or x o (.x’)cob
respectively).

It 1s easy to see that E? may be bicategorized matu-
rally in two ways (the contravariant case is indicated in
parentheses):

B 1s the class of all «*: (a,x > —<a’, X’) suech
that (@t = a', (x)x? = X' (o (X)x? = x
n(¥)x? )e

I, 1s the class of all «*: <a, x> — <{a/, x’> such -
that « :a — @’ 1s one-to-one into and (x)uf c x’

(lor x o (xHat )e

B is the class of all «*:<{a,x>—(a’, x> such
that oo : @ 2, o’ amd (x)x? ¢ X’ (or x 2(x2x? ),

1, 1s the class of all a*: <a, x> —<a’,x’) such
that o : @ —> 2’ 1s one-to-one into and (X )x? = x'n
na®ha?  (or x= (x)x? respectively).
Then, using Lemma 2 &nd 3, it is easy to see that both
[EQ,B,I,J and [E?, P, I,] are good & -ca-

tegories for every functor (covariant or contravariant).
$:E,, — E,, , satisfying (*). Also all full 4 -sub~
categories are good .Ir —categories. Thus for every cova-
risnt functer $: E,, — E_, satisfying (x)
the category of all { -spaces and @ =morphiems [6] bi-
categorized as before is a good . -categary.
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VI. Relative Metatheorem

1. Definition: Let M be a category. Let & ,.A be
subcategories of M, L : koM, : h 5 M the in-
clusion functors, ¢ : .k — -  a functor. We shall
say that ¢ is an M =-functor if there exists a natu-
ral transformation of (g into g,  (i.e. if for
every a € &% there exists a morphism w, €

e Hy(@,(@)y) such that for every oc & Hg (a, ) there
18 o uy = - (X)g). If g:hkh —h is an
isofunctor into end (, and ¢, are naturally equiva-
lent (i.e. all «, € Hy, (@,(a)y ) are isomorphisms
of M ), we shall say that ¢ is an M -isofunctor in-
to or M -embedding. If ¢ is a full (or small) embedding
and also an M —embedding, we shall say that it is a
full (or small respectively) M =~embedding.

2, Definition: Let M be a category. A semismalgam
{A4,% ) will be called an M =-seniamalgam if all fe €
€ X are subcategories of M.

The definition of M -unglueing of an M -semiamalgam
is evident. The definition of an ™ -emalgam and its

M -filling is also evident.

3. Metadefinitions: Let M be a category, W a pro-
perty of M -embeddings. We shall say that W is catego-
rial if

a) every M =-isofunctor onto has W and

b) the composition of any two M =-embeddings with W
has W .
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We shall say that W 1is uwonotonically additive if the
union of every monotone system of small M -embeddings
with W has W .

4. Metadefinitions: Let M be a category, .k its
small subcategory. Let V be a property of subcatego-
ries of M, W a property of M -embeddings. The me-
tadefinitions of the following metanotions are analogous
to those given before (cf V.5 and 6):

V is of M ~-small W =character; V is M -amalga-
mic with respect to W ; V 1is & = M -invariant.

.

5. We recall that a category is called replete (cf [3])

if with each object a it also contains a proper class

of objects isomorphic to a .
Relative Metatheorem: Let M be a replete category, &
1ta' small subcategory. Let W be a categorial property
of M =embeddings, which is monotonically additive. Let

V be a & - M -invariant property of subcategories
of M, which is of M -small W -character and is M -
amalgamic with respect to W .
Then there exists a subcategory U of M with property

V such that every subcategory of M with V can be
fully M =-embedded in U . This M =-embedding is i-
dentical on 4 and has W .
Proof: This is given in the next section.
6. Corollaries: a) Let M be a replete category, ,L the
empty category. It is easy to see that the property V of
being & subcategory of M  and also W of being an M =~
embedding satisfy the requirements of the Metatheorem. Thus
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we hnv; the following result: Let M be a replete cate-
8OFrY; then there exists a subcategory U in which eve~
ry subcategory of M may be fully M -embedded.
b) There exists a concrete cntegory in which every com~
crete category may be fully embedded.
¢) There exists a concrete category with a singleton (or
cosingleton or null ebject) in which every concrete cate~
gory with a singleton (or cosingleton or null morphisms)
may be fully embedded.
d) There exists a connected comcrete category in which
every connected concrete category may be fully embedded.
e) If M is an a=-category, then every | M| ~isefune~
tor is an Q@ -isofunctor. Consequently we have the follo~-
wing result: ' '

Let M be & replete a=-category. Then there exists
an Q -subcategory in which every 4 -subcategory of M
may be fully Q-embedded.
£) There exists a category of (abelian) groups in which
every category of (abelian) groups may be fully additive-
ly embedded. :
g) It M 18 a Ar -category, then every |M]| -isofunc-
tor is a 4 -isofunctor. Consequently we have the follo-
wing result:
Let M be a replete .f--category. Then there exists a
b -subcategory U , which is & good £ ~category, and is
such that every U -subcategory of M , which is a good
Ar =category, may be fully [ -embedded in U .
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ViI. Proof of the Relative Metatheorenm.

The proof of the Relative Metatheorem, which is not enti-
rely analogous to that of the bicategorial or additive
metatheorem, will be given explicitely.

1. In the following M 1s a replete category, 4 its
small subcategory, W a categorial property of M -
embeddings, which is monotdnicnlly additive; V 18 a
property of subcategories of M , which is A& - M -in-
variant, M -amslgamic with respect to W and is of

M =small W =-character.

Notation: The fact that R, c M, b c b and the
inolusion functor L : A — .8 has W, will be deno~ .
ted vy 4 - The conjunction of ¢k ana h )4
(‘1_’ 4, will be denoted by A ::/ b .

It (£ ,X) is an M - (semi)amalgam with V and such
that £ g A& for every & e X , then it will be ter-
med a W =« M -(gemi)amalgam with V .

(L, X)>1sa W= M -amalgam with V, and K 1is
its M -rilling with V such that & ;cv K for every
4 € K ,then K will be termed its W - M =filling
with V.

Ir {&k, s xe T} is 2 monotone system of small sub~
categories of M with V such that .k g 4 2., Whenever
o« < o', then we shall say that it 18 a W = M -monotone
system with V . ‘

1t {R,,xeT} 1s a W = M -nonotone system with 12
ana K= U A, then evidently K %’ K for every
€ T.
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2. Logma: Let A’ /o £ be small subcategories of M
with V, & & ', g:4 2% £ an M -isofuncter i-
dentical on & . Then there exists £ c M with V
such that £ ¢ £’ and that there exists an M -isofunc
tor ¢’: A’ enfe, g’ which extends ¢ . Moreover, if
LA (R p%)= @, then L7- 47 = 07~ A7 .
Proof: First suppose L7 N (A'7- L% ) =@ . Let

{y ; 2€h”S, «, € Hy (a,(@)g ), be & natural e-
quivalence of functors Ly, &nd gi, ,where (, : A —> M
L £— M are the inclusion functors and & : £ —>
~4£.For a e A"~ h° denote by ,«, the identi-
ty, 4, € H,@,a) £ and ¢’ may be defined as fol-
lows: (L)%= 270 (K- k%), 97, = %, %u_—ﬁr) is iden-
tical, for o« € H,, (a,8) put (x)g’-’. « . w, am
pat L' = (W')g’. It 47A (H7-4) + D , choose
some 7' c M such that A" A £ = %° and that the-
re exists an M -isofunctor vy : . A’ 22, 4’ which
is identical on & . Set A= (AIY, T = V-Zj_b ‘Y and

the first case apply to j;, ]b', £ and 7 -

3. Lepga: Let (£, X’ > bea W= M -gsemiamalgam with
V, let & € X' . Then there exists its M -unglueing
(4, X5 such that . ke X ; (£ KX) 1sa W= M -a-

malgam with V .
Proof: This is evident:’
4. Definition: A category H will be called a repletion of

a category P ir:
1) P is a full subeategory of H and contains some
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skeleton of H ;

2) for every a € P”, all & e H - P”  equivalent

to @ form & proper class.

5. Legma: Let R be an equivalence on a class X such
that, for every a € X, {4 € X; - Ra } is a proper
class. Then there exists ¥ c X  and a one-to-one map-
ping ¥ of X onto Y such that for every a € X the-
reis aR@)y amd { & € X~Y; & R a } is a pro-:
per class.

Proof: Let < be an O, -order for X ; set X, =
={lre X; r3a},S5 ={Lfe X;,@jw,/(’rRa}.Put y*=
={& e X; A4r 18 an isolated point of the set Sg 3 . Then
evidently for every @ € X the class{-bc X-Y*; 4 Ra}
is proper. Now let @ € X  and let {3, ; € X, } be n
system of one-to-one mappings 77, : X, —> ¥ *  such that:
1) i & < &', then %'/X;,. = % 5 if 4’ 4s a non-

isolated, then 7. =by&, Vo i

2) if & 3 4, then (£ )7yy RA .
We shall conmstruct %, : X, — Y¥. If @ is non-isola-

ted, put ¥, =, ¥ . If a succeeds a’, it is suffi-

cient to define (a’)y, only. Choose (a’)Ja € {Cc € Y™ ;
cRa’, c¢ (Xg)%ard. Put ¥ U 2, Y=X)g% TiX>Y
such that (a)y = @)y * for every a € X -

6. The notation from item 5 will be used. Moreover, denote
by M’ the full subcategory of M such that M“= M7~ %°,
Lemma: There exists a full subcategory P of M’ and an

M’ ~igofunctor of M’ onto P such that M’ is a reple-




tion of P.

Brogf: Set X = M/, 1let R be the equivalence on X
such that a R &  if and only if o end & are equiva-
lent in M’ ., Apply lemma: 5. Let P be a full subcategory
of M’ such that P = Y, " be an M’ -iscfunctor
of M’ onto P sueh that F/X = o . Then evidently P

and ' have the required properties.

7. Notation: The notation from item 6 will be used.

a) If Z c M7, denote by (Z) the full subcategory of

M such that (Z)” = Z . Set k =(&"),P= (P u k").
Let ¥ bean M 4iaof3nctor of M onto P , identical
on & and such that ‘P/M’ = M.

b) Choose some O, ~order < for the class P’ , which
will be fixed in the following. Denote by ¢ its first e~
lement. If A» € P7, put fva = ({teP, tinsrt),
fon = (R U fve ) -

¢) Por h ¢ A put A’ = b = (K- 47 .

8. Lanmg: Let L c M, L have V. Then there exists a
He M andan M -isofunctor of L onto H , identi-
cal on & such that H= U h), ; here {h, ; e 5}
is & W= M -uonotone system with V such that S’ is
& subclass of P7, ¢ 65’,»’!&-; , and for every 4 €

€S, » & ¢ there is ”D&;{;L-{A’h’t c fr,
Brogf: L. bes property V; consequently L =.(.%JA Ly s
where { £ 3 x € A} 1sa W - M -monotone system

with V and 4 = &  with o, the first element of
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A. Put H=(L), £ 2(e ) ¥ . Nowit is easy to
£ind an order—preserving mapping f of A into P” such
that (o0,)f = ¢  and that for every « € A  the cate-
gory 'e:c 1s a subcategory Oof fv. ., - It is sufficient
to choose (<) & max (supy (B)f,pun £4.”) where < 1is
the order on A. Of course put S’=(A)f , and for » € S’
put /h% = ,e’(,,”-q ° .
9. Construction of U : Let A € P7, » &c and let .
{&“ teP,t < s} bea W= M -monotone system with V
such that:
A &k, = & ;
B)if t & ¢ then a) /k«:n P"= @ ;
b) it A, b c M are small and
have V,hgh',h'—'-hc'fvt and ¢: h — U Kk,

st
is a full M -embedding with W identical on & , then
there exists a full M -embedding with W of A’ into
A&, ,which extends ¢ -
We construct 4, such that { &, ;teP’, t 3 4} 1sa
W = M -monotone system with V satisfying A) and B). Put
k=Y R .For every L 4:3/ 4  with V denote by ¥,
w
the set of all A c M  with V such that .£ < £ and

=L cp. Let <L,H,> be an M -unglueing of the
W = M -seniemalgan £, %, u{k3 > such that k & %,,
let K, be its W = M <rilling with V. Let £ be the
set of all K, , where £ %J&, £ has V, then
(k%8> 18 a W= M -seniamalgam with V ; let ( f, K )
be its M -unglueing. Dencte by 4k’  its W - M ~filling

- 177 =



with V., Let &, be a subcategory of M such that

/k: A P7= @  and that there exists an M -isofunc—
tor of &’ onto -k, 1identical on Kk . (Such & category
A, exists because, for every a ¢ M7, {46 M7~ P~
4 1is equivalent in M with a § is a proper class.)
It is easy to see that { &, ; £ =2 45 7 satisfies A)
and B a). To prove B b) it is sufficient to show that,
if h', h are small subcategories of M, A g 4,
h,h' have V, g:h —k =, & disafull M-
embedding with W identical on & and A= A c qu,,
then there exists a full M -embedding ¥ with W of
A' into M, which extends ¢/. We shall prove this
suxiliary assertion. Put £ = (h)g ; then evidently
2 ::;" do amd there exists £'c M  such that £ & 2’
and there exists an M -isofunctor ¢ ’: A2 4" with
Y7 o ¢ and 2'~ £ = A'+ A (because (A~ A7)n L%
= @ ). Consequently £’ ¢ ¥, - Now it is easy to
see that there exists a full M -embedding 7 with W of
2 into A&, 1de;1tietl on £ . Of course put ¥ = -7 »
By transfinite induction one obtains a W - M -monotone
system {R, ; A€ P} with V satisfying statements
A) and B).
Pat U =»¢L{" A&, . Then evidently U has V.

10. Propositiop: Let H be a subcategory of M with pro-
perty V . Then there exists a full M —embedding with W
of H inte U 4dentical on K .
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Brogf: Using Lemma 8 one may suppose that H = LU, Hp s

where {f,; A € S°¢f is &« W = M -monotons systenm
with V, S’c P", c € 5§’ , 4, = & and for eve-

ry A $ ¢ there is ’O%J't%sh*cﬂk' Now it is

easy to comstruct a full M -embedding ¢ with W of

H into U. Put & = U <, where is the fol-
res O s

lowing full M -embedding with W of -fi, inte K, :
% M =fe—>ﬁ=&a is identical; if A € S’, » & ¢,
set g = tLﬂ{&cy’,, ; then ¢ is a full M -embedding

with W of h = U A, into &k = U "% and define
te S’ th

t3A
Y, by Bb)

Appendix

I. Mipigal universal categories

a) The following metadefinitions may be given:
Let 7 be a "system® of categories. A category U will
be called universal for 7" if every category from 9
can be fully embedded into U . A category U will be
called gcouniversal for O if it can be fully embedded
into every category from 0. A category U will be
called a minigmel upiversal category for J° if it ie
universal for J° and couniversal for the system 0 ~
of all categories universal for O .
Evidently if a category from 9" is universal for O N
then it is a minimal universal category for- O .
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b) Now show that a minimal universal category for the
class of all small categories does not exist.

Definition: Let K’ be a full subcategory of a category K.
We say that K’ is separated in K if for every a & K7,
4e K7~ K'T there 18 H (a,&)u H (&, a)=@ . A ca-
tegory K 1is connected if K is the.only full subcatego-
ry of K separated in K.

Let X be a class of small categories, let @ be a
partial order for J . We define a category K = ‘Ea: X
as follows:
The class K” is the clsss of all couples m = <&,k >,
where &k € X, ach’. For anym,, m,e K, m=<a, ,
,k%>, =42, put Hy (/m,,,/m.z)={<on.,,a\:,rm,z>;o\:sHl21 (a,,a,)}
whenever &, = &, ; 1t &, ‘*'ké, ,put H, (m, ,m, ) =
={{m,,B,m, >} whenever &, © &, ; and put H (my,m,)= @
in the other cases. The definition of composition of morph-
isme in K is evident. (It is defined so that for every .k e
¢ X the napping ¢ : R — K with (a)y =(@,R> for a ek’
() ={(X, k> a,<&, k> for x € k™ isa full
embedding of &k inte K .) If o = @, we shall write
2 X instead of .;_'. x .
Iheorem: There exists no minimal universal categary for the

_elass of all small categories.

Proof: Denote by U the class of all small categaries. No
category universal for ¥ 1s small. Put V= 3 9. Let
< be a total order for the class 7, W= s 9/, Evident-
ly V and W both are universal for 9/, Every full sub-
category of V - which is not small is not connected. Every



full subeategery of W which is not small is connected.
o) Note: We shall say that a category & may be fully sepa-
rately embedded into a category K if there exists an
isofunctor of -k onto a full subcategory of K separa-
ted in K .
The following propertiea of the category V = & U
may be verified:
1) Every M € 9 can be separately fully embedded in-
to V . .
2) I K is a category such that every #t € 9 can be
embedded in K , then V can be embedded in K .
3) Ir K is a category such that every & € 2 can be
fully separately embedded in K , then V can be fully
separately embedded in K .

II. Properties of properties.

Now we prove some propositions about some nature;l properti-
es V .
a) Let & be a epall category, @, ¢ £°  its generator™.
Let V Dbe the following property: & catezary K hag V
Af and oply if it contains 4 as @ full subcategory
and 4, is a geperator of K . We shall prove that V
x) We recall that Q, is a generator of a category A 1P it

is true that if (@« , Y € Hy, (&, c), @ # » , then the-
re exists an « € H, (a,, £~) such that o (™ + x» .
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is amalgamic. The following propositien is true: If
(Z,% 7 1is an anmalgam, g, € £7 a generater of
every & € X | then there exists its filling K
such that @, 1s a generator of K .
We prove the proposition only for the case that X =
= (e, K- L= {23, K- £ ={2,3,0,+ 4 . Let & be
the sum of categories &, and &, with the amalgamated
subcategory £, [11]. Let {<i,72 % ={1,2}. Let Z; be
the following equivalence on HZ, (a; yaz):
o Z; if and only if o . = .k’ for eve-
ry « € Hy, (a,,a;).
Now it 1s easy to see that if <« Z, «c’, then
-6 Z; (“,,' 6 for every 6 € Hg (a;, 23 );
@6 = .6 for every 6 € Hy (@ ,4-),b# 255
6 - Z,6 -’ torevery 66 Hg (@5, 25
- =6 for every 6 € Hg (b, a;), 4+ &; -
Let now K Dbe a category such that K7 = &k v Ja:, 4o,
and &, are full suboategories of K and H, (2;,2;)=
=fa;3 = CHy ca._;,a%i)x{a.,s. '
The definition of the composition in K is evident. It is
easy to see that & has the required properties.
b) Now prove that the property of being ap @ —category is
a —spalgamic « The following proposition holds:
Let (L, K > be an @ -amalgam. Then there exists its
@ -filling K such that i H is an a -category, %, *
Jo, —H an a-funétor such that S’,:./z = %'/1 for

every &k, &' e K , then there exists exactly one
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a =functor ¢: K — H such that ¢ =4 - ¢  where

4 i ® — K 1s the inclusion a -functor.

( K will then be called an & -sum of @ -categories

with amalgamated g -subcategory .Z .)

We prove the propositidn only for the case that X = {'kn»k,z}, ‘
Ihy1” = LI ={an}, IRy 17« fay 3,8, 2, . 12 1LI1 = &
then put IKI”= {a4, @y}, 4,, k, sre full & -subcate-
gories of K and Hy (a,,a,) = fah, a, § 1 He (Qay @ )= {@ay,a,}-
Then evidently K has the required properties. Consequente '
ly we may suppose that [£[7 = & . Let 4% ve the sum

of categories |k, and /&, | with the amalgamated subca~
tegory [£],[11]. Let {i,4%= 171, 2{. We recall that eve-

Ty (we Hﬁ; (a/.;? @; ) may be expressed as {u,.-.ot-ﬂ,’
where o € Hp, (ay,8), s€ Hy, (Bay), #clL|”; and 1f also
w = a’. 3/ where a'c Hy (@;,8), e Hy, (blay ), b 1817,
then <{«,B> R* <o/, 3’5 , where R* is the smallest

equivalence on the set sLIJJI’{H*#(aq’b)x HA, (&, a; )¢

&
containing the following relation R : <%, B> R (' B>
if and only if there exists @ A € |£[™  guch that o=
=ot’+ A 4in Ky, A= A.B in k;, [11]. Then, as
is easy to see, JE has a system of null morphisms. Let

Gy be a free abelian group with o a; s zero and
Hg (@q, a’i)-fd—'a,’, ,ag { its sdt of generators.

Let /A be a category defined as follows: A= [k, |%u I4, 17
I &, | ana |k, | are to be full subcategories of .4, put

H, (@,04)={a, 3= G; = {ay $,12 e, Ve G, , set =<2,

“,ag?, ¥ =Ca; ,¥, 2 ) eamdput &+ = w+P;

8
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consequently if m e H, (a; , @; ) , then m =ig +--ot
-o--(‘i,,b where (.., b, € Hgp (@5, a3 ) ; now put
&.m -m+...+m for every 6 € Hy. (@;,a;);
6:m = 6.yt 0 (thy  for every Oe Hy. (&,2;), b€ 1LI7;
m-6'= @ 6+t @6  for every 6e Hp; (25,2 )5

M.6 =@ Gtrty -6  Lor every 6c Hy, a;, ), brelll’;

and if me Hy(a;,a;), m= Vy+---+ ¥, , paut m.m=
$ = ? £2 00 -
=G o M T TG i e O

The composition in A is associative because the composi-
tion in & 4s associative. Moreover, if m , m € Hy (a;,
a;),6€ Hy (ba,), veH, @;,c) then 6-(m+m)T =
=6.m+ ¥ +6-m-:T .
Now let T; be the following relation on Hj (@, ,ay ) :
m T, m 1f and only if either
m=C(a,+o, ) - f3 , where a«,,00,He, (a;, &), b€
eldl”, e H*i(b,a,),m-aiﬁs.,.o’f;"ﬂf ,or
m=c-(B, + f8,), where ax € Hy (ay,4), Lelll’
P11 Bs€ Hh,(—",arj) ad m = o—c_-_/-.{,-r x- /5
Evidently, if m T; m, then
6mT, 6-m for every 6 € Hy (@;,a,);
(x) 6:im =6 .m for every 6e Hh(hﬂq),»@'#&; H
m.6T, m.6 for every 6¢ Hy(a;,ay);
m.:6= m.@g for every 6c Hy (a;, &), & +a;.
Let S; be the following relation on My (@i, @z ):
mS; m fadonlyif m = p+q,m=fn+q , where

foe Hylag,a5), ¢ T:q .
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Evidently (%) remains true if we replace T; by S;
Let S be the smallest equivalence on Hy (@, @z )
which contains S; . Then 5,;* is a congruence on the
group Hy (a;, a; ), and (x) remains true on replacing
T by Sf

Let now K be a category such that K’ = A7, L&, | and
|k, | are full subcategories of K ana He@;,a;) =

=‘°’”"(H'”(%’w/s: IERCISE

Using (&) with T; replaced by SY | the definition
of the composition in K 1s evident. Now it is also easy
to define th. a -category K such that K| = K , and
Ay, R, are a-subcategories of K . Let now H be
an a -category, ¢, : k,—>H, % : Ak, —>H bve a-
functor such that ¢/, = 5i/£ . Then there exists ex-
sctly one functor %7 : & —> H such tmt ¢, = Z:'lTr,
%=1T -, where ?;,:lak;,l—-)z, L: 1R, 1 — & are
inclusion functors. Let %y : A — H be a functor such
that “’/,l%, =% Vg, =% ond that 1f me H, @, ay),

M= @kt L, then (m )y = (o )P4+ ()T
If m SF m , then evidently (" )y =(m)y¥ . Conse-
quently there exists an a.-~runctor g K-> H sgueh
thet ¢, = 4,9, =0 -, where ¢ : Kk — K,
Y, : &R, —» K are inclusion functors. The unicity of ¢
is evident.
¢ Let ¥, (or V2 ) be the following oroperty of @ —cate-
goriea:
an a=category K has , (er V; ) if and oply if
H (a,4) ia a toreion groue (or a finite sroup, ree=
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pectively) for every a, £ € IKI” . Thep it is a-=
malgapic.

It (£,%X) 1s an a -amalgam with V; (or |, respectively),

then the a-sum K of a-categories from £ with amalgama-

ted a-subcategory £ has V, (or I} ); this follows imme-

diately from the construction of K (ef Appendix,II b).

) Let & Dbe an a -category, G, € /%17  be its senera-
tor, let V be the following property of o -—categories:
an a-eategory K has V Af and only if 1t conteim % as
8 full a=subcategory such that 2, is a generator of K.
Then V is a-smalgamic. We prove only that if £ is a
full a-subcategory of a-categories .&,, &, such that
Iy 1= (L1 afay }, IRy 1= 1817 {23,y + 2, and @, € I£]7
is @ generator of both K, , R, ,then there exists an
@ -filling A of the o -amalgam (L,{k, ,&,}> such
that @, is a generator of R .

Let /4 be an a-sum of .k, and R, with amalgamated a-

subcategory L. Let {i,73 = {7,2}. Let Z; be the follo-

wing relation on H, (@y,az). (w Z; e’ if and only if
at-(w=ob'(u-' for every o € Hy (@, , 2, ). Then it is

easy to see that 2, 4is a congruence on the group
Hy(a;,a;), and that 12 <« Z; «”, then

@ 6Z;,’-6 for every 66 Hy (a;,2;);
@wb6=w' -6 for every 6'e Hy (2; , ), b #+ 2y

*

6.2, 6.’ for every O € Hy (a;,2:);
F-w= 6. !’ for every O € Hh(.b',a;),ﬂ'i"“" g
of course put Hy (2;,a;)={a;}x (Hk(‘zéia‘i’/zm_)x{aj-}sthe

rest is evident.



Evidently, if Hh,,, (c,d) is a torsion group (or

a finite group) for every c,d e !»h:; l,m=1,2, then

Hy (e, d) is too for every ¢, d €[4 7 .

e) Let & be an a =category. We recall,(ll], that &
can be fully q —embedded into ap additive category
K . We shell sketch this construction to show that
the inclusiop functor has geveral required properties.
Every a € | KI” is a finite collection of elements
of 1 kI”. I a={a;;4=1,...,m3,b={8;; f=1,.m3IeIKI,
then Hy (a,£) is the set of all & = <@ ,{f; ;; € =1,
vy My G =4y, M) 8 where Ay € Hh(a,- , 2z ) . The
triple <a,{dt; ; ;4,7 %,4> will be denoted simply
by {og 35 4, 43% . It a={og;; i,43%,
B=APij;i,73*eHc(a, &), then x+f =
={°°-:,;;"‘ Y 1,73 . 1= {oc; 55 i, p*e Hela, &),
B={f0;7,£3*eH (bc), then « - B={F o0, [ ,; %, L3

It 1s easy to see that & can be fully aq -embedded into

K and K is additive; and also that if for any c, & €

€ 1&17 the group H, (c,d) 4s a torsion group (or &

finite group respectively) then for every a, & e IKIT

the groun H, (@, -4) is also such.

Now prove that if ¢ is a generator of .&, then {c} is

& generator of K. Let a, &€ |KI”, o, B€ H (a,&),

oc#/S,ot={oc,_~l};i,;’—}"‘,ﬂ'{ﬂf,}-;i,}}*. Then there exist

%,,, such that % ,4, * Bi,j - Hence there existe

a e Hy(e, @5 ) such that (u.ao‘-“io;k(“.ﬂ‘.”’% .

Take © = {@, ; 1 }*, @, €H, (¢,a; ) such that o, = «,
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Pp "Gh,q, for < % t, , where & denotes the mnull

morphism. Then @ - o w% p-s -

*) Now oreve that the property of being s 4 -catesory
is not 4 -apmlganic, Let 2, k&,, R, be & -catego-
Ties from the following diagrams (identities are not
indicated):
all diagrams are commutative and
{-dentttus} u{o el L = {tdentities} U{L;: 105 ‘;/)%HP’} H

identitie
3.,' { ts}u U {a, Jré,ﬂ?,%},

Ik ={identities} L u{ e}
~{1.dant;tus; v v f.ﬂ" ,JT.,), Treer s Tgs },
= {identiti '
&z{ ies} o I, U{“&fl'u:"“”"qlﬂ"f ) Ler * T e 2 byt te

""’,‘;"a,‘?ﬂ' 'L ] P("‘,P (“, F' ‘ d,Lf,‘ﬂ_';r"-"s’; *
4L:

It is easy to sce that £ is
a full & -subcategory of
both &, and &, . Let & be
a A -category such that &,
and 4k, are both full 4 -sub~
categories of & .

Then necesaarily o ,&’c F ,
e, plru’ € ly and
x-pe=xloploeet.
But then necessarily there ex—
ists an isomorphism 6 ¢

€ Hyp(a,a’). But £ 1s &
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full A -subcategory of &, so that 6¢ Hy, (a, a’) ;

this is a contradiction, because Hy; (2, 2’) = @ .

g) Now we prove that the property W of being a 4 —agbed-
dinz onto & good 4 ~subcategory is categorial and momo-
donically additive.

First prove that W is categorial. It is sufficient to
prove that if K is a good A -subcategory of R, R a
good XU -subcategory of S, then K is & good £ -gub~
category of S.Let we ISI™, @e IKI” . Since’
IKI” ¢ IR19, there exists sTe 3, ¢ € Ig such
that T € IR/ amd @ =sv- L . But them T =

= (177 € K| end consequently ( € Iy . Thus there
exist 6 P, , pe I, such that & e 1KIT
amd L =6°p@ ; then (u.-(ar.ﬁ’).p.l‘heproof
is analoguous in the case that (‘io— e IKIT.

Now prove that W 4is monotonically additive. Let

{/"oc;i €T}, {;ceT? be monotone.syetema of
small 0 -categories such that, for every o € T, A is
a good Ar-subcategory of lgc . We shall prove that then

the .4r -category S = & A 18 a good i -subcatego-

ryof B=_U L . Let € I1B1™  and let

€T
@& elsl”, Choose oc € T sueh that
« € 1 & I™, @ eln | . Evidently there then ex-
ists 7"55,;“:%, Le.&&'c Ia such tha
w=mreL, e ln l”. ‘
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good & -aubcategory,

Now prove thet V is - -agpalgzamic with regpect to
W . The following proposition holds: Let ( £, X )
be a .{r ~amalgam such that £ 1s a good .¢ =sub-
category of every R € X . Then there exists its
Ar =filling K such that every R e X is a
good {r -subcategory of K , and that if H is a

Ar =category amd ¢ : ke — H are £ -functors
with %/ = ¥/,  for every .k, A € X, then
there exists exactly one £ -functor ¢v: K — H
with ¢ = 4 * % , where (, :.& — K 1is the
inclusion & =functor.

¥e prove the proposition only for the case that
Hed{hk,, R, ? -

1set B=R Ll ,m=1,2. Let.h be
& sum of the categories /£, | and [k, | with the amal-
gamated sube.ategory (£1, 0111, Put B¥={x-f;
xeP, , x e Ill";ﬂ is an isomorphism of 41, I:=
“{p-w;ael, ,Xcltl”, A 1s an isomorphism of A }
put P= Bué'nsupzupz*’ I=I,vifuvlulf.
Then evidently Pc A™, Lc A7 .

2) Now prove that if ., Y € P, e - » 18 defi-
ned in A  then . » e P.

Let {1,737 ={1,27.1¢ &,v€eF, u B*  then
evidently ¢ -ve P.

Consequently let « € P u B*, ve B u B* ; 1¢
@cﬁ;,vsd’;%!,oce@,;’élll”, A 1s
an isomorphism of A, then &« € lh; 17N 1417,
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thus oc € [} and therefore (¢ - € P, and then

@ veP. Let weF, vehB . Then Welllo.
Since £ 1is a good _{r -subcategory of ,kj B there ex-
ists 8 © € [} and an isomorphism ¢ of £; such
that ¥ = ©=.g . But then «w -7 ¢ F; and there-
fore -V =(w-.z)-p€P. Lot w=F"-F,
@ =B , where xe P, T elel”, A 1is
an isomorphism of 4 ; and let»eF; U I;’“, V= -0, )
where € F; and 0 is an isomorphism of -4 ( o~ may
be also identity of course). Then ﬁe 1217, B e Ik;I%
consequently (3 is an isomorphism of K, and there-
fore B-y € P;. Since £ 1is a good .~ -subcatego-
ry of /&?- , there exists #8 2~ € 7 and an isomorph-
ism g of k; suech that .79 = 2 -c . But then
®-ze P and -0~ is an isomorphism of . ;

thus Y =&K.R -y -F'=(x-z)-(yp-0)€ P.

3) Similarly one may prove that if zc,» e 1 and -
is defined, then (¢ - » € 1.

4) Now we prove that if « € A", then there exist ace
eP, Bel such that (a=vc-ﬂ»1fmoreover

@ e I,kwl"' or (t‘z €lk, |7 thenX ek, |
(m=1,2). This is evident whenever w € |.R, |™ .

Now let {1,7%=1{1,2}%, &« € A™ such that ZZ €
€lh,|”, @ € 1k;I|”. Then there exist g e Ik, I™,
yelk, I™ with o = Y: ¥ . Then g = -4,
Y=, Ly where M, e B, ,el,, MR, ¢, e 1z,

¥ L 4

and thus there exist s7e¢ f, L€ I, with = =ty -

.:rr‘.q, . Fow put o« =, . T, ﬂnL-LV.Evidontlx
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aeP, fel, uet:-f am X 6lel” -

5) Let {£,53={1,2}. We recall,[11], that if (« €
eh™, welk, ™, "&?elkf-l”’,thgn @ = oc /3, where
xelh,I™, Belk, ™ 12 also w =ot’. 4" witha'e
e & I™, B'e Lk, I, then <o, /3> R* <a’, /3’5, where
R* 1s the smallest equivalence on the set

o5iew THe (&, 4)x He, (4@ )}  which contains the

follewing relation R : <a,A) R <a’, 37> i and
only if there exists a © € |£[”™ with «-p =o',
oA =P

6) Now let <ox, 32> R {x’, 37> . Choose 7, € £,
e l,,mep, €I; such that T - (e = x,7.
+by = /5. Then choose 7 ; € R, , € I, such that

ﬂ’"ﬁ . Lx,ﬁ =L Ty - AnalogouslYy choose ., , L_, ,:17;,.,
4
., - ar,. =3’ .
V2 Wd’,/sn "0",/3’ (deee 77, - =) Tpre bg =B T

lp = e Ty T T € B bes e € L 0

Now prove that there exists an isomorphism = of ./ such
-t
that T Tn T=T T ' T s BT e
Since <oc, Y R <&’ 377  there exists a p €!LI™
with o - © =“,”ﬂ=j°.ﬂ'. Choose -77’; € ’Z’%
with o7, . L, = (. Choose 7L &%, Gope I, with
/
T * layp = bt Ty Toem Lo = mipe
=7 1.;‘.1; . Lp-(-‘z‘-\?z"’)'((z’? . bf); consequently there
exists an isomorphism ¢ of fe; such that - . T d=

T by tpm F b - SiMoe P 1L T e 17, g s
an isomorphism of £ . Now choose :f’},,,y el ‘:P,/” el,

. = . . th N o
(such that 7p - G 5, = o ° My 5 R (7 T8

.
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(yp, (—'y)a o Ty by =@-.R=B =TT, ﬁ,-othat
there exists an isomorphism 3 of R auch that 7, - ¥ =
=T To,p 2V o5 = G NOW (Lo 0P T ) ey g

-”:cf S (Mgt bapr ) = Ty P s T = T

R e i S i Sl A AL
9/3 ‘écﬂ ‘5‘-"7!“/!‘“ V‘gp/,« /J’s“ﬁ.‘,ﬁ'w‘[p/’"‘h’;

but all the 'concidered morphiam are morphisms of /k and
L/’, is a monomorphism of Je,-; then (&'govir/;; 8" x,/a’ .
. o‘b,ﬁ, Consequently (ar . P {‘7’,5,) ‘-2‘/3' .7‘5” (g‘ﬂ Ylop ).
All the considered morphium are elements of |/ 4£!™ and

therefore there exists an isomorphism T of ./ such that

.rr t‘-.rr' 9.77‘%‘,'5— cY L -4&,,/,, . But then

ﬁ 274 .
e'idently ﬂT" 7&7{5"5’ = J’:" %’,P'?' a'r',ﬁ'n ﬂ;,'%;n:?
Lr,"‘—,:'r-’, . . . = -1, .
wp “e s WV o B =T % s b

7) Now it is easy to see that if <« ,/3 > R* <°('1/5'>;
T :rreP,“, d,eIl,.'n/;,Jrclf L Y% el
S, K=y, By, BTt Tas d}ﬂ'eg'
,‘;,,,,g;,,el,,ﬂz,”,-g,,,-—-gg T sog b %, then there exists an i-
somorphism © of £ such that 7 - Zp T= T Teope ?

L e Lﬁﬁf"ﬁ’,/& by Consequently if ¢, '€ I, ar’e P
ﬁ”ewl’,ﬁ?elll’ and m.L , I’ are defined and
equal, then there exists an isomorphism T of £ such
thet @ . T =7, = . .L = ¢ .

8) Let now o € A, e esr.L=ar’ L/, where I, 7'c P,
L, t'e I,

“\
We shall prove that
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Ed

(X) there exists an isomorphism = of . such that

g =a’, T-= L .
Let {<,73=41,27. Let e e Ibo;I™ .
Then there exist isomorphisms g,¥  of ~ euch that
ep-p, L=g 6, Tep g L=g”". 6, where p,0’c I,
6,6’ I; . Thus there exists an isomorphism = of fe;
sush that @ -7 = ', 2.0 '= 6, and then - (P~ ". .
)=, (.o g)L = L.
Fow let wo e A™, e lh, 1]l elbk;l”. It Feltl”,
57 e |£17 , them () 1s proved in 7). The following
four cases are possible: (7e Ik 17, 7 & 14, 17) o
(e b, 1% T e Ik 1) or (e lkyl”, 7 e 1y 1)
or finally (#’¢ |4;[%, 7 e |4, | ) ., Only the
first will be considered, the remesining are analogous.
It T elk, 1% T7e [4,|” then 7, #’c P; and the-
re exist isomorphisme ¢, ¢’ of k; mad 6, 0'c I
such that L = ¢ -6, t'=¢’. 6°. But then /- F €
€lLl’, .177-—9_’”6 INALe and there exists an isomorphism 2
oo L with .. v =7".g", z.0"= 6, and them
wo(p.T-FN=a’ (p-z-F)et'= ¢ .
9) New we must prove that every * € P is an epimorph-
ism of f, every L el is a monomorphism of A . It
1s sufticient te prove this for me L v R,cel v I,
only. Let {<, 7 3={1,2¢, e P, w,6 ve A", -
s = N+ . Then evidently & - D . It & e
Gl 17, then e = . Let e ldey;|” . Since
e lhy |7, there exist 7, . 6P, t.,L, ¢ Iy

such that oo = 71 - ¢ amd 7 o< L7,

“ Y=, . Ly, .
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J?'velll’. Sinee (Jr-JrP)oaﬂa(fr-J;)-L,,,thore
existe an isomorphism ¥ of £ with 7., .7z = 7T,
Tel,= Le - But 57 1is an epimorphism of &, , 80

that :n;_‘_. T =TT, and comsequently ¢ = Jr‘u cle

=M, Toly=T, oL, =». If L€ I, , then ¢ 18 a
monomorphism ef )», as may be proved analogously.
10) Now prove that P N I is the set of all isomorph-
isms of /. Let 6 be an isomorphism of o ; we shall
prove that 6 € P N I . This is evident whenever .
CeR™0 R™. Let 14,4 3=11,23,Fc kI, T K .
Then evidently 6 = or - L , where Te F,, c e F.
It may be then shown that L -6 "= ™", ¢-"7r= ¢~
in /., consequently 6 € P A 1 . Conversely let
6°e PN 1, we shall prove that 6 1is an isomorphisnm
of M . This is evident if 6 (R U B, ) (1, u 1,)
Let <, 4€ {1,233, €6 € P*n I; . Then
6 = oa.B=B",c", where xe P,, X 1217, x'e Iz,
W e 1£1° apd 3,3’ are isomorphiems of 4. Thus
K -@P=a’, where © =3 - ()7, It is easy to see
that P e (LI”, = =% € R . Consequently @
is an isomorphism of R, and therefore a - € £, N I;.
Consequently 6 is an isomorphism of -/ .
The proof of II g) is complete, and L /o , P, I ] has
the required properties.
1) New prove that the property of beinz e - =category je .
of 4 -small character. Evidently if {4 ; oC'E T3 is

& monotone system of small ./~ -categories, then

B=_ U .ty

weT & is a A -category.
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Conversely, let there be given a .6 =category B . Then

l&lcngT . , vhere {c.; a« € T} 4is a monotone
‘system of small categories. Let oc € T and let there

be already constructed @ momotone system { &, ; ReT,

b < 3 of small .J -categories such that every
A 1s a full 4 -subcategory of B amd ¢, c {,b;; [.
We shall construct ‘efc . Denote by P; the smallest ele-

. 07 o o .
ment of the clns{réT,gouﬁthwl—e;’,l ccrf ; for

every L € cz choose some a. € [B|”  such that
there exist Jr € P8 , L el such that « =77 - L,
T o= @q - Choose 77 € T, % £ 79 , such that

a, € c;; for every . € c';.: . For every ¢ €
€ c;;’ choose some a, € (B/7 such that there
exist W€ R, eI, with e =JT-L , 7= &, - Choose
NG T, 3; 2 7 with a, € c‘a’; for every
@ € ¢y , and so on. Let £, be a full £ -subcate-
gory of B such that |.f | =.«L?1 Cp

III. Universal category for categories with a structure.

"It is easy to see that the idea of the metatheorem amd
its proof is the same for a -categories and for .4 -ca-
tegories. Now we shall apply it to obtain a corresponding
metatheorem for categaries with a structure.

For the definition of categories with a structure the

ideas given in [2] are used.

1. In the Bernays-Godel set-theory one may not form the

mlgs —



category of all categories (not necessarily small) and

all their functors, nor the category of all classes and

all their mappings.

Thus we shall suppose that there exists a strongly inacces-
sible cardinal i, , i.e. an uncountable regular cardinsl

such that if i, < H, , then 2% oy
2 be a set such that

1) eard WU = 24 ;

2) if a set A is an element of %, then card A < H, ;

3)1f card A < H, then Ae U Ac U %,
Every category K such that K“ u K™c U and that

for every a, & € K7 there 18 H, (a, £)e 2 will

> ; and let

S

be called & 9, =category.

A QL -category K will be called small if K7e¢ 2 .

2. Denote by Ml the category of all sets Ac % and
all their mappings. Denote by L the category of all

9( -categories snd all their functors. Denote by ¢ : €~
= M the forgetful functor, i.e. the functor which to e-

x) As is well-known, the existence of a strongly inaccessib=
le cardinal is not provable from the axioms of the Bernays- .
GOodel set-theory. But if we suppose it, then a set % with
properties 1) to 3) may be easily constructed.

In [4] the ordered couple { X, > is defined to be <x,4L>=
={x,{X,14 3}, where {x, yy} denotes the set consis-
ting of X and 4. Thus if %( satisfies 1) to 3) then A,
Be U implies Ax&'e"ll,.

]
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very 9/ -categary K assigns the set K™ of all its
morphisms.

3. Let & be m categary, let ¥: $— M  be a fun-
ctor with the following properties:

«) ¥ 1is faithful, i.e. if «,Be S™, &= 13, X = 3,
() =(B)Y, then = /3;

B)ir o« e Hg (5, A7) is an isomorphism of %5,
h, € B, (5)F=(5)¥, then in $ there exists
exactly one isomorphism /3 such that 73— = A
and ()Y = (RIS ;

Y)if m e M“A U , then all » € $° such
that (5)S =m form a set the power of which is
less than © . - '

The objects of $ will be called structures, $ will be
called & category of structures.

4. Definpition: Let 5, A€ $7. We shall say that
is a substructure of 4 if:

a) (2% c (BT ;

b) there exists an L € Hg (5, »)  such that
WY : (A)S~> (5)S  1s the inclusion mapping;

e) if »"e %, pe Hg(»”, ) are sueh that
BV (A)S amd @IF: (H5*)F — (5)S 18 the
inclusion mapping, then there exists exactly one
&« € Hg (5%, »') such that 0 = oC-( and that
@)L : (H)F —> (»’)Y  is the inclusion map=
ping. :

It is easy to see that L from the definition is unique.
It will be called an inclusion morphism (of »’ into .4 in
$ ). It is easy to see that if .5’, ,5” are both sub-
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structures of 4 and (»')¥ = (4“)S, then A’ = A" ;
and that if A” is a substructure of A’ and 4’ is a sub=
structure of /% ,then 45” 1s a substructure of .5 .
5. Let (€, be a fixed subcategory of £ = $ such that:
a) the objects of L, are some (.&,45), where R €
€ €7, A€ %% ()€=(»)F; the morphisms of C,
are some < ¢, > where g e C™, fe 5™,
(€ = (1Y ;
b) if (¢,¥>€ € and » is an isomorphiem of
C, ¥ 1s an isomorphism of $ , then(y; £ e C*.

The objects of (, will be called 4 =-categories, morphisms
of €, will be called .5 -functors., If K=C4,s " is an’
A =category, put IKI| = & and call it the underlying ca-
tegory of K. If & = (¢, f)> 1s an A -functor, put
I§| =¢ and call it the underlying functor of $. If
d=C(y, f> is an A -functor such that ¢ is an inclu-
sion functor, f 4s an inclusion morphism in $ , call &
an inclusion /4 =functor; moreover if ¢/ is full, call §

a full inclusion 4 =functor. If K’, K are .5 -catego-
ries, we shall say that K’ is a (full) sub~ 4 =category of
K whenever there exists an (full) inclusion /A =functor
from K' to K .

If K is an A -category, we shall say that K is small
whenever (K| 1s small @ =-category (i.e. |IKI” € U ),
Every isomorphism of {, will be called an ./ =iscfunctor
onto. If ® 1s an A -functor, § = P‘. L , where &’
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is an A4 -isofunctor onto, ( 1is an (full) inclusion 4 -
functor, then $ will be called an (full) A -embedding or
an 4 =-isofunctor into (onto a full sub - 4 =category).

6. Let {R. 3 x € T} be a system of small .5 -catego-
ries, T is an (), —ordered set, T c U and if o < o’

then &, is a full sub - 5 =category of & . Then we shall
say that { R .; st ¢ T} is a monotone system of small 5 -
categories. If there exists exactly one & € L such

that (& | = U | & | and that every &, is a full

sub~ A -category of R , then we shall say that{R ; < € T}

is summable and R is its union, and denote by & =,,¢éj1—*:c‘

Let { & ;€T ,{h, ; c € T} be monotone systems

of small 4 -=categories. Let &, : /h‘ — J'b,c be an
/> =embedding for every o« € T such that &. “"’4.:' =
=*“|.:'- &,. for every o« < o’ , where by "“L:' s

4 o’
M, — b, > b R, — 4k, are denoted the inclu-

sion- 4 -functors. Then we shall say that {$..; X € T? is

& monotone system of .5 —embeddings. Let /& or A be an u-
nionof {4k ; e T} or {#H ; o« € T} respec-
tively. If there exists exactly one .5 —embedding & : fr—

~» /& such that ‘7,“ $ = Q"*’Lx for every o € T,

where *L; : Je‘—-v/k, “‘Lx : ,ﬁ,‘ — A are inclusion
A =functors, then we shall say that {$. ; €« € T ? is
summable and that ¢ is its union, and denote it by & =

’:e(.&éjr P
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7. Let W be a property of . —embeddings.

We shall say that W ig categorijal if:

a) every 4 ~isofunctor onto has W ;

’

b) if @ and @ have W and @ - ®° 1is defined then it
also has W.

We shall say that W ig full if it has the following
property:

if ® 1s an A -isofunctor onto, L a full inclusion & =
functor with W , both from the same small /% -category,
both to small A4 =-categories, then there exists an 4 =iso~
functor §’ onto and & full inclusion 4 =functor (/ with
W such that § ¢/ = ¢ &’ . We shall say that W i3 mo=-
notonically additive if every monotone system {d,.; oc € T¢
of /5 -embeddings with W such that {‘5.: ; € T3,
{E?; X € T } are summable, has a union with W .

8. We shall say that ( £, > is an 4 ~-semiamalgem if X
is & set of small . -categories, caxdd X < ¢4 . and £
is a full sub~ 4 =category of every -k € X . If more-
over 1.&I9 A | &1=12]7 whenever .k, k'e X,
Jo # &', then we shall say that .2 , > 1san A=
anslgam.

The definition of an A =unglueing of an /> =semiamalgam,
and of an 4 =-filling of an A4 -amalgam is evident.

9. Let W be a property of .4 -embeddings, V a property

of A =categories.

We shall say that V is 4 -amalgsmic with respect to W
if every 4 -amalgam ( £ , X' ) such that £ has V ,

that every k€ X has V and that,for every & € X the

\
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inclusion 4 =functor L:‘: L — has W, has an
4 =filling K with V such that far every & € * the
inclusion A4 =functor o: 1k —>K has W.
We shall say that V jis of 4 —gmall W =cheracter if it
has the following property:
a) ﬂ'{h,c ;€ T}? is a monotone system of small A =
categories with V such that the inclusion 4 -func-
tor L‘:z 4, —> &, has W for every o« < x’,
then its union exists and has V ;
b) if an A -category K has V, then K =ngTakk , whe-
re {&k, ; xe T} is a monotone system of small
A =categories with V guch that for every o« < o’
the inclusion 4 =functor «.:’:Jg‘ — A&, has W.
Let & be a small 4 ~category. We shall say that V is /E -
S =invariant if the following obtains:
a) & has V3
b) every .6 -category with V contains .o as a full
sub- 4 =category;
¢) if &k ie a small 4 -category with V, ¢ 1is an i-
sofunctor of |R| onto a category £ identical on
| &1, then there exists a small % -categary -h
with V and an .4 -isofunctor & of A onto -4 such
that lh !l = £, 1Pl = ¢ -
10, Metatheoremfor A -categorieg. Let W be a property
of / =—embeddings, which is categorial, full and monotoni-
cally additive. Let -k be & small % -category. Let V be
& property of /4 =categories, which is ; - /4 =invariant,
/A =smalgamic with respect to W and is of 4 ~-small
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W =character .

Then there exists an 4 -category U with V such that eve-

ry A4 =category with V can be fully /4 =-embedded in U .

This embedding has W and its underlying functor is identi-
cal on |&I .
The proof is left to the reader.
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