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Commentationes Mathematicae Universitatis Carolinae 

7,2 (1966) 

AN EXAMPLE CONCERNING SMALL CHANGES, CF COMMUTING FuHC-FIOHS. 

Pav«l GORALfifK, Prsha 

A number of papers has been devoted i n the l a s t years 

to the study of pairs of commuting funct ions (by a funct ion 

i s meant, throughout t h i s remark, a continuous transformation" 

of the segment CO, 1-1 in to i t s e l f ) • The aim of t h i s remark 

i s to give an example of extremely "discontinuous" behavior 

of two commuting funct ions : a s l i g h t modif icat ion of one may 

cause an unexpectedly great change of the other i n order t o 

preserve commutativity. 

Given an arbitrary e € (0 - -y ) , there are construc­

ted three piece-wiee linear functions -f, f * ; ^ such 

that 9 . * f « f « 9 . , ?(**, f ) * 6 in the uniform metric, 

and that f> (f?f g-) -* -§• whenever £.*• f*m f* • y* . 

The function f * also has another property* It ha» two 

fixed points 0 and -§- and, whenevergf« # * • f*« f/*f e i ­

ther 9-*(*j) • | » or a, i s identically zero# 

Define the functions 4 and £. by: 

1 1 . ^ 3 * ~ 2 fer-xcCf f1J, 

Clearly, # and g* are continuous and commute * under 

composition. 

Now, we shall modify the function 4 in a small neigh­

borhood of its fixed point y , putting for 0 *-* £ < 4 
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f
f6x) hr x € c a , 4 - f J u t | ^ f f1 J 

- 3 * + f - § for a c C f - f , | - f J 
- * + 4 for x i . [ | - f , f ^ ] 
~ 3 x + f + f *«. xeLj + % ,'4 * f J • 

There i s f ( f * , f ) ^ 4 in the uniform met-

rio f , and we shall prove that for any continuous func­

tion £.* commuting with f * the iae$ui2jrty $0(9?, 9.) > -4 

holds* 

Define an equivalence E on L0f 11 fcy «x£^ . i f 

and only i f f**V-x)« f^^(nf) for some positive integers 

in,., ^ * The set E C*3 of elements equivalent with ,x 

wil l he called the component of «X • The usefulness of 

such an equivalence i s based on the fact that if x E n^, 

then also 9»*(oO E £.* (<if ) for any function ^ commuting 

with f * * 

Bit Xtf » £-§- § , 4 "** I J • ***** â ow that E CX,] -

• U E C * I i s dense in CO, H * 

I*et U he an open interval of length q , and suppose 

t**(U)* X0 ~0 am { £ f%m-(U) for *L~0,1r.. -

Siaoe the slope of f * i s not l e s s than 2 on [0,1] \ X, 

«nd no fm^(U) contains the point -£ 7 the length of 

f%m*(U) increases geometrically with n f contrary to 

f**(U) a L 0f 11 . Therefore, for some *t« we have 

either | e f * * * * O f ) or f *"•• <TU)n X - V + 0 • 

In the caae Y * # for some f ef^-^HY)* U + 0 , 

there i s f * ^ f f ) £ X , i . e . f * £ £ X 0 J -
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If f** (U ) contains -£ , put £ ~ f - l ^ p * 

taking >n. such that | a f *"*• f U ) • then ***•**£ > f e X«. 

It i s also easi ly seen that ELQln £CX03 - Jf f 

since i f * e ECO J then f ^ C x ) - 0 for stiff i d e n t ­

ity large ft , whereas f^ty) * X„ tor <y.e E LX* 1 

and large n » 

Now le t g.*, be a continuous function commuting with f* 

She *et { 0,-j J consisting of fixed points of the func­

t ion f* i s invariant under g> , therefore p-V-f) ~ *f 

OP.' ffCJtl- 0 . . In the f i r s t case /o f̂ .*, ^ ) > ^ , 

since <fr (-j ) *% -? • 

Assume $-*("§ ) ** 0 • We are going to show that 

£.*<*) » J for etery x e L 0, 11 . 

First f a couple (x f <y,), x} <y. a L 07 U, «X + y. , i s 

called a 2-cycle at f* it f*(x)»n+, f*(<&) - x . Et i -

dently, the Image of a 2-cycle under 9.* i s a 2-cycle or a 

fixed point of f* . Obserte that any point in Xa i s e i ­

ther fixed or belongs to a 2-cycle. As g? i s continuous, 

the segment X, must be mapped onto a segment containing 

0 , etery paint of which i s either fixed or belongs to a 2 -

cyele. By definition of f* , there i s no proper segment 

with this property. Hence, g** (Xm ) » 0 . 

But this meana that E C ^ J is carried by £.* into 

£ L01 . It i s easy to see that £ C 0 J is nowhere dense. 

Indeed, since EIXC] i s the union of closed non-trit ial 

intertala JJ0 f*c~^ (Xm ) and i s dense in L0f12, i t s 

complement i s nowhere dense. I t follows that E LX03 i s 
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sapped by <j? onto 0 • Am £ t A« 3 Is dense and £.* 

oontinuous, there Is §.*(# ) •* 0 for every x 6 

e C O f 1 3 . 
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