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AN EXAMPLE CONCERNING SMALL CHANGES. OF COMMUTING FUNCTIORS.
Pavel GORALEfK, Praha

A number of papers has been devoted in the last years

to the study of pairs of commuting functions (by a fﬁnction
is meant, throughout this remark, a continuous transformation
of the segment [0,1) into itself). The aim of this remark
is to give an example of extremely "discontinuous" behavior
of two commting functions: a slight modification of one may
cause an unexpectedly great change of the other in order to
preserve coﬁutativity.

Given an arbitrary € € (0, -g- ) , there are construc-
ted three piece-wise linear functions +, f*, g.  such
that g.of = f og, ;D('F*, £)%& € in the uniform metric,
and that p (3%, ¢) & -’3'- whenever g.*of™ = f*. 9t .

The function % also has another property. It has two
fixed points 0 and -ﬁ- and, whenever g¥e f* = £%, 9% e1-
ther g_"(-%-) - -25- » Or 9,* is identically zero.

Define the functyions £ and g by:

25 for xe[0,4] 9“)_{3“ for xel0,41

~3x+2 for xelf 41
20x-1) for e LEA1 T L etd 1.

fi(x)=

Clearly, ¢ and g are continuous and commute under
composition.

Now, we shall modify the function f in a small neigh-
borhood of its fixed point 'i- » putting for 0 < & <« %
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£(x) for ‘xe[D,%—%]u[% +§,11]

: . -3:&*%--% for xe[%-% ,-%---i—]
AR R T T S MY

-3x+§+ % for xerdeE, L+ L.

There 18 @ (f* f) < £ in the uniform met-
ric @ , and we shall prove that for any continuous func-
tion 9* commuting with f¥ the inequalsty p(g% g)> §
holds.

Define an equivalence E on [0,1] vy xEny 1if
and only if +*™(x)= f“"('y.) for some positive integers
m, 7 . The set ELCx1 of elements equivalent with x
will be called the component of X . The usefulness of
such an equivalence is based on the fact that if x E y-
then alse ¢*(x) Eg*(a ) for any function 9,* commut ing
with §%,

_ Put X, = E%'% ’ ";" + %J . First show that ELX,]1=
=UE [x] s dense in [ 0,117.

Let U be an open interval of length 7 , and suppose
FEMUIA X, = and § £ FET(UY far m=0,,... .
Sinoe the slope of #* is not less than 2 on[0,71\ X,

and ne f*™(U) oontains the point 4 , the length of
5" (V) incresses s;onetrically with n , contrary to
f**(U) @ [ 0,1] . Therefore, for some 7, We have
etther £ € £*% (U) o £*™ (Wn'X, =Y % £ .

In the case Y # Z _ for some fe#"("'b)()’)n Uu=g,

there 18 f*™(§)e X, 1.e. feELX,] -
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If %% (U) contains i’- » put f_--%~—-'5'—_—l—;;
teking m such that §e£%™° (U) ; then frosngrage X
It is also easily seen that ELOIN ELX,] = &,
since if x € ELO] +then f*™(x)= 0 for sufficient-
Iy large m , whereas f*™(y)e X, for yeE[X,]
and large 7 .

Now let ¢* be a continuous function commuting with +%.
The set {0,-%' $} oconsisting of fired points of the fune-
tion f* is invariant under gf,_therefore 9.*(%—) - —32-
a g*(4) = 0 . In the first case p(g* g) > % s
etnce g (§)=,0 .

Assume 9.*(% )= 0 . We are going to show that
gX(x)=0 for every xe L 0,11].

First, a couple (Xx,4), X,4e[0,1], x +y ,is
called a 2-cycle of f* if F¥(x) =g, £* (%) = x . Evi-
dently, the image of a 2-cycle under 9* is a 2=-cycle or a
fixed point of % . Observe that any point in X, is ei-
ther fixed or belongs to a 2-cycle. As 93" is continuous,
the segment X, must be mepped onto a segment containing
0 , every point of which is either fixed or belongs to a 2-
cycle. By definition of f* , there is no proper segment
with this property. Hence, g* (X, )= 0.

But thie means that ELX,] is carried by g* into
ELO0]. It is easy to see that ELO0) is nowhere. dense.
Indeed, since E [X,] is the union of closed nop-trivial
intervals “ga £¥6m (X)) and is dense in [ 0,11, its
complement is nowhere dense., It follows that E [ X,] 1is
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mapped by g* onto 0. as E[X,] 1is dense and g*

continuous, there is @*(x) = 0 for every x ¢

el0,11.
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