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A NOTE ON CHEHATA'S GROUPS
Ladislav BERAN, Praha

1. Tﬁe purpose of this nbte is to establish the existen-
ce of & ¢lass of maximal subgroups in the uhple groups G(F)*
and G(Y).

Terminology, notation, and fundamental facts about these
groups to be used later are given in [1].

2. Pollowing Chetrata [1], we denote by H(JY) , U= '
=[x, 31, the subset of G(V) of all elements which have
three breaks only, by S (J) the subset of $ (J) of ele-
ments with three breaks, the first at o«f , the second be~
tween & and A3 , and the third at S -

Let ¥ = («;8), & < 8, be an open interval, s« , 3 <F,

§,€ (x, ). The set of all elemnts f € G(J’) such
that  (§,)=5, we denote by WL (§, , ') . Similarly
is defineda ML (§, , F).

3. The following assertions will be used in the proof
of the main theorems:
Lemma (3,1), Let & <y <§f<d < 8 and let f be an
element of G ((ct, 3)) which has the break at f ', but
in (9, §) and (f,0") 4t has no breaks.

Then there is an element k € S([y;0]) such that

(1) # = fk

(11) §(§)= £(§) 1r § & (y,0) .

(111) 4  hes no breaks in (9-,0") -
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This Lemms is a generalization of Chehata’s Lemma 5 and can

be proved by similar methods.
Corollary (3,2)s Let & < §, </, U'=(x,/3) and let £ be
an element of G (J)= U ({, , '),

£ ={4 '1724 §1:0 fn-2 R “w ,4-

Then there are g, e & ([§,, w), t="1...,» and
h;edn,61), f=1..., t, 5+t & m -2 such that

(%) %o fg, ... quvg o My

(11%) £% (5, )= (5,

(111x) F¥(5) = §  for § & (W, @), A @A <f, <& @

(1v¥) $* e S(LA, w'1).
Corollary (3,3). If we assume in Lemma (3,1) that moreover
f(§)>¢ for all § e (y, o), then $(§)>$ for fe
e (g, :
Lenma (3,4). Let £*e 5 (Ly;00)= WL(S, ,(x,B M, <y<§,<I<f,
be an element of the form

¥'+= {/1 Tm,, fo @y

and let £%(§,) >¢, .

It @e F, §, < <", then there are elements £,
zzs M (g, ,y3)) which have the f."onowing properties:

1) =4, 8, e SULy,dT)

2) F)=p-
Proof: If we take

L= {4 $o " 'F"‘(S.)W IS 3
and choose @, 3  such that
L+ (5, V=,

3

then
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YPLACE RN 4*-‘c5.>q,a,1 foya, Tt

This element we can transform by a suitable £, to an element
which has its break in (¥ ,d") at £#%(f,) only; this is
possible by Lemma (3,1), Hence we obtain

4w Ly £ Ly € B (L, D)

and .

(L 4%, )CE,) = (L FFY Ly (§,N= Ly £4)(E) = @ ¢ '
Singce

(L 8IE+1 (N =§, >£+71(g)
and

((14*)(&) =@ >§
it follows that
(L, $%)(§)>§ # §e (¥,d)-
Consequently, by Corollary (3,3)
F)>F it §Se (y,d)
and we conclude
f'e S(Ly,01).
Lemma (3,5). If < y’< focd<pB,acy<f. < <f3, and

36 6(Ly’; d’1), then there is an elenmt m e DL, ,B)
such that mg-m™'e 6 (Lo, 0" 1)

The proof is analogous to that of Lemma 1 in (1] and is here
omitted.

4. The main results are expressed in the following theo-
Tems:

Theorem (4,1). The group T (§,,(x,B80,5, e (x,B) , 1is
& maximal subgroup of G ((ex, 3)) -
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Proafs Obviously ML (§,,(x,8) e G ((x,3)) . Suppose
£¢ 'M(f,,(o&,ﬂ)} pleee £(§ ) § . Ve can assume
without loss of generality that f(f.) >§. - Using Co-
rollary (3,2), we transform £ to the element % and
since £*(§,) = £(£)>§, it implies f*¥e HU(x,B) =

~ WL (E (®,[3)). Let us denote by 71 ={M9L (§.,(=,3Ns¥}

the subgroup generated by elements of 971 (f., (¢, BsY

and f . Then f*e 9 and by Lemmes(3,4) and (3,1)
t'e . it £'e S(Ly,d1) amd § < £'(§, )=@ < O, where
=AU, Fe (%),

__ Now it 18 easy to show that 92 2S5 (Ly, o J). In-
deed, if " € S([¥,0"1), then either £%f,)>§, or
£7°1(§,)>§o . But if £7(§, V> §, , we know already
that #" € ?. It £°7(§,) > §, , let us mltiply this
element on the right by a suitable element £ € 7L, ,(x,
pN=D?,using Corollary (3,2) and Lemma (3,4). We get

£°-'2e S(L¥, 0r]) and since (F*U)N(E Y= £""(§8.)> §o

it follows that +* 'L € ? and thus £” e 7L . Hence

N o{S(Ly,r NN} =G (Ly,d).

If g is an element of G((x,3) and g ¢ WL, then
A(g) < §o, (@) > § . Let us write A (g) = >’
(3)= &' . By Lemma (3,5) there 1s an element m € X1

such that >

mgm™ & G(Cy,d1)c AN.
This implies )
9, &€ m1:4 Nom c n J

since

me N <.
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But then
GUa,ANc N={R,$+}c G {(x,B),

hence
GUk,AN =~ {7N,f}-
The proof is complete.
Using Theorem (4,1), we infer the

Theorem (4,2). The group WL(§,,F),fo€ F is a maximal
subgroup of G (F) .

Bibliography:
f1] C.Ge CHEHATA: An algebraically simple ordered group,

Proc.Lond. Math.Soc.,2(1952),183-197.

(Received October 11, 1965)

-12] -



		webmaster@dml.cz
	2012-04-27T16:19:25+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




