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ON THE SOLUTION OF THE MIXED PROBLEM
Jan KADLEC and Alois KUFNER, Praha
(Preliminary communication)

1.

Let {1 be a bounded domain in the plane E,, whose
boundary O{L fulfils locally a Lipschitz condition.
Decompose the boundary OJSL into two parts,

N =r,+r, ,
where [}, has positive measure. Consider & function ¢
on AN such that
g = 0 on l", )
. Y >0 on I, .
Let’

L ow
(1.1) Awu-= -2'1% %‘;(a;j (x,,x,_)ﬁj )+ e (x,,x, )u

be an elliptic differential operator of the second order,
N =(My, N, ) the exterior normal vector to O <£L

and
) Qu

=, . - n;,
v =1 3 axi J
the exterior .co-normal derivative.

In this preliminary communication, we shall state so-
me results concerning the solution of the mixed problem
(1.2) Au =+ in O,

ou
(103) V7 q é_{; = g on a-()— °
A -7 =



) It will be pgn;:ted out that, under further assumptions,
the solution may be sought in special weight. spaces, with
the weight function

[dist (x, 0%
thgse_make it possible to give a better characterization of
the behavior of solutions in the neighborhood of those points
‘on Of)  which ere limit points of both [}  and , -
From this point of view it is possible to solve the
mixed problem also for those right-hand sides and boundary

conditions for which the variational solution cannot be

found without using weight functions (i.e. there exists no
solution in the corresponding space with o¢ = 0 )., Fur-
thermore, one can (for various f and g ) find better so-
lutions than by the usual variational procedure.

Repark: The fact that only the two-dimensional case is consi-
dered, is not_eaaential; in 7 dimensions the difficulties
are only in describing the position and shape of the parta

"y eana T, of the boundary O (L .

2.

In this section we ‘shall introduce some functional
spaces. For simplicity we consider only real functions and
functionals; derivatives are understood in the sense of dis-
tribution-theory.

The space of all functions 4L for which the norm

. %
2 u 2 %_a, 2 2
(2.1) u““wlb)m)= ("M le(m-o-laj;‘le(m-'-ﬁ ‘xg”“t(‘n")
is finite will be denoted by W, ().
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Let (@ (x) be the distance between the point X =
=(x,,%) @nd [} , and let of be a real number. It will
be said that the function w is in the space L,_" (L) if

- /2 2_o 1/z
"“”Lz“m)* Nl "L " 2_/'144. g x)dx )
Demote by W% () the set of all functions with

the finite norm
(2. 2) "M"w"?‘mv'ﬂunl- m,+|3 s ”&x ﬂ ucm_,)/z )

)
Next, let Vz, < () be the space of all functions:

such that

M el

o .
ren (), 5% e Ly () (is12)

7 Ox;
with the corresponding norm

o 2

2 1/
(2.3) Yl R"Lz,dm»*ﬂ%‘-il"t.l,am)) :

2
vq)m)— ("'“fu _z“u +"

Obviously \/2('2 n)c V\é’(:: ) ; from the authors ‘results,
[1], it follows that the function L € Vz(?c n) has
zero trace on [y . ,
It will be said that a function ¢ on Ol 1is in

the space Wz(,:/i) () if there exists a function

; € Wz(,?c () such that g. 1s the trace of & on
9{L . The function g is said to be the prolongation of

g in {) , and we define

ug'"wf’/”(am = inf ”9’“W‘” @y
where the infimum :ls taken over all prolongations 9, of
the function 9 . We shall always consider thos e pro;onga—

tions g, for which

I g "w“’ ) £ ¢ llg,llwn/g)(a_n_)
with < sgome poaitive constant.
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The spece L, . (T, )  1s defined as the set

of all functions « on [; with the finite norm
2 %
. I = & 2%d6) .
(2.4) I Lz’q"‘(q) ("{9 Jid

The most important space for our consideration is
the space
S () = R ()AL, g (1)
with the norm

)%

(2.5) Hal = (i tlwll  (ny

)
Vl,o\'r ) 2,9,%

The space L, o« (I, ) characterizes the trace of the

o)
Sz’“’ )

function w e S (1) on [}, ; the trace of 4L

on [} is obviously zero since S,fz Q) c Vz(:'i ) .
Remark. Let o« = 0 and ¢ (x) Z2cp(x) where c is
& positive constant. Then

. 14 4
f—;fl'-db'é—a.’{f, a6 .

i

It follows from the properties of traces of functions from
WA () thet for every u € W ()  (ama thus
also for every ac e V(1) ) the latter integral is
necessarily finite and can be estimated by the norm
ﬂullv‘_m (L) - Thus in this case 52"’(.(1)—'—' \é('l)(_n_) .
We shall 8o assume that ¢ (x) £ c E(Xx) .
Let (L1) -be the set of all infinitely differen-
tisble functions with compact support in () .Let G be_

a normal space, i.e. G = D(1N) in the narm of the
space O , and let G > Sz‘j; (L)  algebraically and

topologically (for example @ = L, ({1) ). Let



@’/ *be the space of all continuous linear functionals on
@ (i.e« Q' 4s the space dual to Q ).

The space dual to S; (L)  1e denoted by
52(:_",)‘, (L) ; the smecedual to L, , o () may be
1dentified with the space L, . (1) in the usual
manner. Finally, \A(z(,':{:) (o) denotes the space dual

to W, o) .
1

3. . .

Consider the operator A in the form (1.1) and the
boundary value problem (1.2) and (1.3). Assume that

1) the functions a; (X, %) m'e measurable
bounded in ()l , and the quadratic rorm Z (X,,x,)f,- f;"
is positive definite uniformly with relpect to x-(x1,.x,_)e.f).;

2) the function c(x,,X,) 4s positive measurable;

3) the function cy(x;, .5(2) (see boundary condition
(1.2)) fulfils a Lipschitz condition;so we abviously have

9(xy,%,) € € P(X,%,) for (X,,X,) € dIL -

To the operatar A  there corresponds the bilinear

form

(3.1) a(u, v)—fa, (.x)g—‘i’ gf dx+fc.,~.u..1rd.x;
n

from the ellipticity of A it follows that
la (u, )l 2 c"M/’wm(.o_) ’
To the mixed problem (1.2) and (1.3) there corresponds

e

the bilinear form

(3.2} Bu,v) = a(u,«h{%&( a6
2
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defined on the cartesian product 52(;2 () = 52(’41 o (1)
it can be easily shown that

b

(3.3) ,B(M,’U')l =] (o llullsz(.:)‘ ) "1,—”52(:”_“‘ @)
(3.4) Bum,u)l = ¢ uuu;;,,m) (ie. x=0) -

Definition. The bilinear form B(v, 4.) 1is said to be loc |-
elliptic, if there are positive constants ¢, and c, such

that

IB(w, v )] 2 ¢ //m{sﬂ;m) )

ﬂvﬁ ) =1
s )

"M/.ruv iy |B(m,v) = ¢, ll'v-l!szm
5;’43‘(_0_) ’

Now, we have

x(ﬂ.)

Theorem 1. Under the corresponding hypotheses to the form
B(w, ), there exists an interval J = (=97 , 72 )
(45 > 0) such that for o« € J the form B (u,v ) i
| & | =elliptic.
Regark., If B (wm,v)=B(v», ) then ;= 7; -

Next we have, by the generalized Lax-Milgram theorem,
(2], the following
Theorem 2. Let o« € 7 , 1let F be a functional on the
soace S () (t.e. Fe S (/1) ). Then the-
re exists precisely one element w- € 51(,1{‘ (n) such

that BCw ) ~ F ()

for every v € Sz(f_’ac (fL) , =and that

510 () s 1705 @)
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4.

Froxg Theorem 2 we obtain t!;e existence and uniqueness
of the weak solution of the mixed problem (1.2) and (1.3);
the exact formulation of this problem will be given in sec-
tion 5.

In all further considerations we assume oc € J , whe-
re 7 1is an interval as described by Theorem 1.

Let f e G and let g be a functional on the
space of traces of functions from SZ)_“ () ; Wwe assu<

me that g- can be decomposed thus:

(4.1) @ =%t G, t SG3

%)
where g € szﬁ (9N) (with the corresponding pro-
longation g, € Wzﬁi (L) )y 3, € Lz’g,’ac (ry)

and we put g, = 0 for x e[} , and € V\éf‘f)(@ﬂ);
for Yy e Sz(j’_w (), 93,(¥ ) means the same as
Yy (¢ y).

Let 3 e S (N) ; setting

LY 7

(4.2) Fy) = fy) - a(é,;lff)'*.r‘/%l/ + 9, (y)
2

we have the

Theorem 3. The functional F from (4.2) is in the space

52('7;’, ().

It follows from Theorem 2 that there is precisely one
element w € 5;1; (£1) sweh that Bw,y)=F(y) fa
every Y € ‘Sz(,4)-4, (1) . Set 4 = w + @, , and let
93,‘ ’ 9«; ) 9«; be functionals which form another decom=
position of the functional g from (4.1). i.e.

4$=9+%+9% =%+ +99; -
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Let F* be the functional corresponding to f, @, G
and g} in a manner similar to (4.2), and let ™= ¥+
+ g, , where w™ 1is the solution of the equation
Bw* y)=F*(y). Then we have

Theorem 4. Under the above hypotheses, 4™ = 4 -

Se
Defipition. Let f be a functional.on 82{4,)—4- (L1) ; let g

be- a functional on the space of traces of functions from

Sz“,)_‘, (n) with corresponding decomposition of the
form (4.1). Let F be defined by (4.2).
The funetion w e W, (N ) is said to be a

weak solution of the mixed problem (1.2) apd (1.3), if
V) ou-g e 57 ),
2) B(u~3, %) = F(y) for every vy 651"’1‘(11).

Theorem 5. Let o € J . Then there exists. precisely one

weak solution 4 € héf’:‘_ (1) of the mixed problem

(1.2) and (1.3), and the estimates .

- la -g, ”s;jém) & c HFﬂs;.l,c ) |
““‘"u{'l’"‘m) £ c(el+lgl+lg I+lg, 1)

hold (the norms n’ro considered :_I.n the corresponding spaces).

Theoren 6. If loc| 1s sufficiently suall and « € L ca)

18 such that B (w,y )= 0 for every v € 5[:’_,‘ L,
then 4« = 0. '

This theorem extends the assertion on uniqueness of
solution, proved in Theorem 5 for the space 52(7) . (11 ),

to the larger space \4‘2 (L)
3




6o

In this section it is established that the weak solution,
defined in section 5, solves the problem (1.2) and (1.3) in
the classical sense, if every element is a sufficiently
smooth funciion.

l. The condition 4« -'g, € S5 (1)  yields « =
=g, =g on [ .

2., We shall consider functions ¥ which are zero in the
neighbourhood of [ ; the equality B (« -,y ) = F(y):
can then be rewritten as

B(w,y) B(z},,#f)+F(1r)—a.(91,yr)+f Y d6 +

]

+ f(y) - a@w”*-f[%—— d6’+r'f9, yde =
2 3

n

i.e.
alu,y)+ [2E de = ffwd.x+f29-f£-d6
L a2 r
By Green’'s theorem,
w(u,qy')—fAu z/rd.x+f y dé ,

i.e. _ )
fAu,.yrdxq-fba—:,—‘: zp‘d€-/fyrdx+ffq—f;——ldo’ .
Q oL a r,

For y € D({l) we have fAu,.yfd.x.-j-’[fyr dx and thus

Ky ™
Aw =Ff_ in IL
But in this case ve have for 3y # 0 on [}

f wd€-rf%ﬁvd6

t

and thus %— 2—-— on [, ; therefore

u+qg?=9- on r‘z ’




establishing that our formulation is meaningful.
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