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LIMITS IN CATEGORILS AND LIMIT-PRESERVING FUNCTORS
V&ra TRNKOVA, Praha

It need not be emphasized that the existence of direct

and inverse limits is one of the most important properties
of a category. Of course not all categories have this pro-

perty. But sometimes it suffices that a category be embedded-
able into a category with limits (or with sums or kernels

or biproducts ete.) if the embedding functor has convenient
properties (full, exact etc.).

PA nunber of various embedding-theorems is well-known,
[5], usually for categories satisfying some further proper-
ties, most often for additive and abelian categories. For
general catégories the possibility of full embedding into a
category withgsums has been proved [3], and also into a ca-
tegory with inverse limits,[lOJ; for small categories x) the
Possibility 6f full embedding into a category with finite
sums and finite products has also been proved,[3]. In gene-
ral, the embedding functor does not preserve the limits al=-
ready exisfing in the original category.

x) In [3]it is not expressly stated that the categories con=
sidered are small; the proof proceeds by‘induction, which

cannot be carried out for "large" categories within the fra-
mework of the Bernays-Godel axioms which are used for the ’

present paper. -1 -



In the present paper full embeddings of a given category
into a category with limits are studled. Ho-weyer, we also re-
quire that the embedding functor preserve some or all the
liupa already preunt.vﬂ Enbedding theorems are usually
proved by describing o;'_constmcting the whole category at
one step. The basic idea of the present conntructionﬁ con-
"eslsts in adding limits one by one. _

The present paper is divided into three parts. The first
contains some auxiliary lemmas used for the proof of the
main lemmas I.8 and I.9. Lemma I.8 states that, roughly
speaking, to a given gmall category one object can be ad-
Joined in such & manner that it is a direct limit of a gi-
ven diagram, and that all direct and inverse limits origi-
nally present are preserved. Lemma I.9 also considers the-
pguibility of extending the given functor. The suxiliary
lemmas of this first part also contain some of constructive
character which do not expressly mention limits, and might
poseibly even have further applications. In particular,
Leupa I.2 is of this type; it states that to an arbitrary
given category one may "add & morphism” such that its com-
position with some morphisms is prescribed and vﬂ_:h‘ the
others it 1.' "free". In the second part of the present pa-
per there are prgved some embedding-theorems for small ca-
tegories, obtained by suitable iteration of Lemmas I.8 and

x) While this paper was being referred, the author obtained
& preprint of J.R. Isbell’s paper Structure of categories I
which is connected with the problems studied here.



1.9 (and of their duals). For example, by means of Lemma I.8

we obtain that every small category may be fully embedded in=-
to & complete category such that the embedding-functor preser-
ves all already existing direct and inverse limits (Theorem
I1.7.B). By means of Lemma I.9 we obtain the following Theo-
rem IL.5: _ '

Let & be a small category, let G , G; ve sets of diagrems
in k& , let Vz, | be classes of diagram schema. Then
there exists a ( —lZ:,(-V:) -complete category K- and a full
embedding ¢ : 4k — K which is (Ed_),@ ) -preserving;
furthermore, for every ( VZ ,(_\7: ) —complete category K’
and every (E: , ‘Z}: ) ~preserving functor ¢ : £ — K’ the=-
re exists a (W, W ) =preserving functor ¥ : K — K’
unique up to natural equivalence such that L v = ¢ .
Analogous problems are oonsidered for categories with a sys-
tem of null morphisms., For example it is proved that every
small category & with a system of null morphisms may be
fully and "exactly” embedded (i.e. the embedding preserves
kernels and cokernels already existing in & ) into a small
category K with kernels and cokernels such that every "ex-
act" functor from k to a category with kernels and coker-
nQ;Lu may be extended on K (cf.IX.8). In the third part of
the present paper the embedding of arbitrary categories is
c’ons:lc_lored._In general it is not poui.l;le to enbed fl_ll!_.y a
"large” category into & category with finite sums preserving.
all finite sums already existing (of. example III.1l). But
this 1s "almost possible”; for alnoat—utesorioa_(obﬁgimd
by ongtting the axioa thgt all morphisms from one object to
snother form & set) stated above Theorem II.5 is consistent
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with the axioms of set=theory (if there exists a strongly in-
accessible cardinal number)even if (; and G; are clas =
8 e 8 of diagrams (cf.I1I.2). Finally, (cf.III.3-7) there is
exhibited a construction which, for every class V of dia-
gram schema and for an arbitrary category y'3 , describes a
full embedding L : & — K sguch that k& is V—}-complete
in K (i.e. every YL , vhere ¥f is a |/ -diagram in &,
has a direct limit in K ) and every functor ¢ : k& — K’
into a T-complete category may be extended to K . If

\V 1is the class of all small discrete categories, then K

is the category comstructed in [3]. If & is the claass of
all diagram schema, then K is the category duel to that
constructed in [10].

The present paper is written within the Bernays-Godel
set=theory; thus, we distinguish sets and classes. Thg
axioms are described in [6]. Although the present paper is
not written formally (in some details even not quite preci-
sely), these axioms are consistently respected. The axiom
of choice is assumed. The existence of a strongly inaccessitle car-
dinal number (i.e. a regular uncountable cardinal ~ such
that « < 4 = 2%< 4 ) is not assumed, unless expressly
stated (only in II.2Z ). The results presented may also
be carried over into some other set-theories.

The definitions of the basic notions (category, objects
and morphisms, ‘full subcategory, category with a system of
null morphisms, skeleton, functor and so on) are taken over
from 8]. Also the notation of [8] is used; if K 4s a ca-
tegory, then HK (a, & ) denotes the set of all morphisms

of K from an object a to an object & . If
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xeH (a, &) , f3eH (&, ¢) , then the composition of oc
and /3 4is denotéd by ot . 3 . In agreement with this con-
vention, the value of a map (e.g. a functor) ¢ et an X
will be denoted by (x)¢  instead of the more usual < (x).
This also applies to the order in writing the composition of
mappings. By an embedding is meant an iso-functor into. If

K is a category, then K denotes the class of all its
objects, K™ the class of all its morphisms. If a € K7 ,
denote by £, the identity-morphism of @ . If K7 is a .
set, then K is called small and the power of K is meant
the power of K™ . Let J, K be categories, J small,
let $:J— K be a functor. We shall term ¥ a diagram
in K , and 7 1s called a diagram schema; put card F =
=cud J™ . It J 4s & quasi-ordered set, then it may be
considered as a category. In such a case 5 will be called
a presheaf; and if furthermore a, &re J7, Hy(@, &)= {x},
then () will also be denoted by ?”afr. If J is a
category such that J™  contains only identities, then it
is-called a discrete category and ¥ 1is also called a col-
lection (in K ). We recall the well-known definitions,[4],
(53,073,[9].

Defipitions: Let ¥ : J — K be a diagram in K . A
couple  &;{%;; 4 € 7] ) will be called a direct
(or inverse) bound of ¥ (in K ) if {y; ;1 € U7} 1is
a natural transformation of ¥ into the constant functor
K : T+ K (orof X in # respectively) such that

(I VK ={l} , deee if L e K, v, € H () F, &)
(or 1y, € Ho (&, (<) F) ) am if 1,1 € J7,

6e Hy (i, i”) then w; = 5(6.)3". Yo, lor ¥, . (6) F = Yy,



respectively). A direct bound (or inverse bound) < a ;
{v;; 1€ J7§)> of F will be called a direct (or in-
verse) limit of ¥ and denoted by ﬁT»Z F  (or ‘LT»K Z )
Af 1t has the following property: if {L;{y;; 1 € J”§ >
is an arbitrary direct (or inverse) bound of #  then there
exists exactly one f € H, (@, &) (or feH, (4,2 ) ) such
" that Y. f=1 (or f.v; =y; , respectively) for all_
16 s o, Then f 4s called the canonical morphism of the
direct (or inverse) bound <65 {y; ; L€ J";) , a 1s
denoted by | Zm, #| (or| Bmy 7| , respectively).

Let now ¥: J — K be a diagram in . K , let < a ;
{v;; 1 €J7} )  be its direct (or inverse) limit, let
®: K— H Dbea functor. We shall say that $ preserves
the direct (or inverse) limit of ¥ 1 < (a) ;
{(v;)d; i€ 73 ) is a direct (or 1nVerse. res~
pectively) limit of 5 . The direct (or inverse) limit
of a collection is also called its sum (or product, respec-
tively).

Conventions: Let & be a class of diagrams in a category K,
F:KoH o functor; the class of all %$ , where
Y e & , 1s denoted by &P . Let V be a class of
diagran qohm; every diagram whose schema belongs to 4
will be called @ | -diagram. Let V;, /. be classes of
diagram schems; every category K 4n which every )y -die-
gram (or ;dim-) has a direct (or anmveru) limit
will be called V’ -complete (or V- -eonplete, respec-
tivcly). every category K which is both V -complete
and V- ~complete will be called ( Vd ,\g. ) ~complete or

-6 -
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( \4 , V4 )=complete. Let K be a category, let Gy , G,
be classes of diagrams in K , let $: K— H be a func-

—» «—
tor; we shall say that ® 1s @, -preserving (or G; -pre-
serving) if it preserves direct limits (or inverse limits)
of all diagrams of Gy (or &; , respectively); if &

— ) “— ’
is G, =preserving and G; -preserving, we shall say
— — —
that it 18 (G, (E};)-preserving or (@&, Gg)=-preser-
ving. If K 1s a category, V 1is a class of diagram sche-
ma, denote by KY the clags of all V -diagrems in K .
The class of all diagram schema will alv;ays be denoted by
(—-—.

Z . A (7, Z ) -complete category is called complete.
If a direct bound (.&; {¢; ; £ € I} ) 1is denoted by
a-single letter m , then <(&)E5{)F; i€ T"7 ) 1s
often denoted by (m)@; .

If K,H are categories with system of null morphisms,
then every functor $: K —>H such that ()P 1s a mull
morphism of H whenever o is a null morphism of K will

be called a null functor. [f L is a set,denote
b ={{x,x>jxe L3-

~ I. Auxiliary lemmas.

The aim of this section is the proof of lemmas I.8 and I.9
which will be useful in obtaining embedding thearems for
a@all categories (given in II.). » 7 _

+ I.1. Legma: Let £ be a category, let R  be a rela-
tion on L™ euch that « R 3 implies o,B e H,(a, )
for some a, &€ £7 . Then there ex{sts a category 4 and
a functor 7 : £ — A  such that '

1) A7 = A% e 1dentical on £ ; 1f o« R 3, then
-7-



() = (3)r;

2) 1 §: £ - K 1s a functor such that (x) =(B)P
whenever o« R /3 , then there exists exactly one functor
Y:h-—+ K suchthat & = 7. % .

Broof: Let S be the smallest equivalence on .£”" such that

. RuA‘mCS and «&.ASa’. 3’ whenever o Sx’, ASp3’

and either oc ./ or «’. 3’ is defined. Let A be the

category such that 47 = h7, H,(a,&) = H, (a,);5 ;
the definition of the composition in A 1is evident. I 1is
the functor identical on £7 and factor-mapping from _£7*
onto the decomposition £7*/S . Evidently .4 and 7 have
the required properties.

Note 1 : Let £ bea categoPy, let a € £7, let .k be the

full subcategory of £ such that &7 = £9- {af.Let R

be a relation on £™ such that if o« R /3, then o ,B¢€

eHy(c,a) forsome ce £ and x.p=/3.02 for eve-

ry € Hy (a,d ) whenever d e £, d # @ . Then the-
re exists a category .A satisfying conditions 1) 2) from
lemma I.1 and also the following 3): A& is a full subcatego-
ry of ,h,l Hh(az,c7=Hl (a,c) for every ¢ €. L%~

~-{a} and 7 is identical on & and on all H, (a, e),

¢ # Q@ . In such a case we shall usually write A = {/R s

I’ = 4/R . (The category constructed in the proof of lem-

ma I.1 does not satisfy 3), but some isomorphic category

, does.)

Note 2 : Evi:lerrt]:, if £ hss a system of null morphisms

*

then /. also does, and 77 is a null functer.




I.2. Lenga A: Let £ be a category, @, & € £ . For
every ¢ % a and p€ H, (a,c) let there be'given a morph=
ism  pe Hy (&, c) such that:

a) i ¢, de % cta+d, pety(a,c), p’e H,(c,d),
then (wf‘"["’ = (“((o.,(o’) f

b)if e+ a+d, e Hyla,c), Be Hy (c,a) ’)’SHL(D‘:d):
deH,(d,a), o .3 = 9-d, then ./3.—.‘“_7.(!'.

Then there exists a category A such that ‘

1) £ 4s a subcategony of ./ (denote by ( : £ — 4o the in- .
clusion functor); £7= A”; it c,de £%, d + a , then
Hp(e,d) = Hy (c,d ) ; there exists a M E HA(XV, a),
such that w .p=,f forallpeH,(a,d),d+a-

2) I $: £ —- K 1s a functor and if there exists a
w'e H ((B)p,@)P ) such that . (p)P =(.p)d
whenever @€ Hy (@,d), d + g , then there exists
exactly one functor ¥ : A — K with (u’ = ((u)lf’ ’

d =Y.

3) If 4 4e an infinite regular cardinal with card L™& &,
then caxd A™ £ < . Moreover, if # 1s uncountable
and 22 Hy(c,d) < ts forall c,de€ £7, then
caxd Hk(c,d)f & forall c,d e A7,

Lemma B: Let £ be & category with a system of null
morphisms, le.t a, &r e £7. For every ¢ + a amd P €
€Hy(a, c) 1let there be given a morphism ,p € H, (& c)
such that the statements a) b) from lemma A are satisfied.
Then there exists a category # with a system of null
morphisms such that A 1s a subcategory of A4 s ‘the inclu~-
sion-functor L : £ — 4 4is a null functor, conditions

) -9"



1) and 3) from lemma A are satisfied, &nd

2°) if §: £ — K  1is & null functor and if there exists
w'eH (), @)d) “such that (u,'.Qo )P =
=(,®)®  whemever pe H; (@,d) , d + a , then
there exists exactly one null functor ¥ : A — K with

w = (¥, =LY .

" The proof, rather lengthy and not particularly interesting,
‘ are given in the Appendix. ’

I.3. Notation. Denote by K the cgtegory of all small
eategories, and all their funcfors. Denote by IK, ite sub-
category consisting of all small categories with a system
of null morphisms and all their null functors. Denote by M
the category of all sets and all their mappings. Denote by
M the functor, M : K — M , which assigns to every
small category A the set k™ of all ite morphisms.

- Lopma: A: Every directed presheaf (i.e. a small functor
with a directed set as domain)in K (or in K,.) has a di-
rect-1imit in K (or in K, respectively). ¢

. Progf: Let ¥ be a presheaf in K (or in K, ),
let L = | WM, ¥ M | . If ¥ 1is s dirgeted Pre-
sheaf, then one may define the composition in L in the na-
tural manner (1.e. 1f ¥: (¥, 3> K,{L,{vz;7€ J} )=
.mm’éﬂ./% , then for o ,3,y € L put o(,‘- B =7
i and only if there exista a j 6  ama <, B° y’e
€ (3)% such that («)vy =, Bz =fp , (F vy = ‘
end «’./3’= 9'); and then L is the set of all morphisms
of some category A for which evidently A = IZ):»K ¥ |
(or -lm“;’% | - respectively).



Note 1: Evidently, if o is a directed presheaf in K, ,
then m:x,,,% = fom, %I  where I: K — K is the in-
clusion functor.

Note 2: Let 4 be a small category, let ¥: </,3 >—> [K be
a directed presheaf such that -k is a full subcategory of
()% for every 4 € ;} and that the functor 2;6;’ is
identical on & for every ; -3 9- ‘. It is easily seen
that then there exists a direct limit <h;{7j ; 7€ J 1)

of £ in K (or in K,  respectively) such that & is .
the full subcategory of 4 and each 7, is identical on

4k . Moreover, if A 1is a subset of the set of all morphisms
for every category (7)J  and if every 365-” is identi-
cal on A , then A c A™ and every 7 is identical on -
A . . _

Lemme: B: Let #:<),3)— K be a directed preshea in K,
set b = (j.)}e,lt=ll_7mx’3€l .If ¥ is an infinite cardi-
nal such that card J 5 5 , cawd K7 £ & for all

4 € J , then caxd A™ < 5 . Moreover, if 4 is regu-
lar, card J < 5, cawol Hy ;e d)< 5 for every c,d e b7,
je J, then cad H, (¢,d) < t5  for everyc,d e h’.
Proof: The firat part of the lemma is evident. Thus let #

be & regular cardinal, and assume that caed J < # ,_
cwwLHh(cdkK forevery cde,h,-, ;€.

(hj {‘Ug ;7€73 )m&m ¥. Let there exist 2, & € ,hr
such that cardl Hh(a.,,(r) 2 & . For every o € H,' (a.,&)
choose some 7.€ J, a,,4; € /hj x e H,._’,“ (a, , &)
such that (a.)vj, = a, (& )Y, J’, (Lvy, = o -
Since cexd J < # , there exiat JeJ amd Hc Hy @, &)

—'u-



such that satd H = # '89‘1’},‘:; for eve’¥ o« & H

_—-

Choose some oL € H , and for every B3e H choogse some
5;; € 7}  such that ;» Jﬂ (a )?f;- = (W,,)?fa— .
Since card f < 6 , there exiat 7 e? and Hc H such
that cautH = X, gﬁ = g. foreveryBeH .Fou-
every ﬂe choose some g.', e } such that g ;./, 5
&, )3&-” =-C€*)3t’— . Then there exist H"c H and
3*e } such that card H* 2 & | ama ;f;, = 4% for
every Be H*. For every B, & H* there 1s

(ay) %} = (@, m’ = a¥, Gl = (0 H] = & .

Since caxd H'h'i (a»*ﬁ‘")<l’< there exist /3, A’ e H*

/3 = 3 such that (' )'b‘e'1 = (") 36‘? ; however,
this 1is 1mpoaeible, since /3 () v (7;")(3(.’;;. %) =
= (7 )(are’ . () = /3' .

I.4. Notation apd definitions:Let F: J —» & be a dia-
gram in a category & , let a; {v; ; £ € J73) bve its di-
rect limit in 4k . Denote by [ the set of all vy ,

(i e J9), denote by Tz the s e t of all triples

- . . . 4
(v; ,(@) F, v;, ) where ¢,i’e 7, 6eH (Z,27).

The couple < Fr ; T )  will be called the direct _
substance of the diagram F in the category 4 . Let
& bea category. We shall say that two diagrams which both
have a direct limit in &  are directly equivalent if they
have the same direct substance. Evidently direct equivalence

ig.a_reflexive, symmetric and transitive relation on the class

x) The class D is often a proper class (i.e. not a set) even

" for a small category R and therefore the notion of the di-

rect substance was introduced 12

x)
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D of all diagrams in R which have a direct limit in & .
If G is a class of diagrams in R , denote by V/ some
choice=class of G N D (i.e. no two distinct diagrams
from \/ are directly equivalent, and for every diagram from
GnD there exists a diagram in V/ .- which is directly
equivalent with it) and call it the directly substantial
class of diagrams from & . If k 1s small, then evidently
WV 1s a set. Now let a category & be a full subcategory’
of some category K , and denote by ( : 4 — K the inclu- *
sion-functor. Let £: J —_k be a diagram which has a
direct limit in & , denoted by <a;{v; ; £ €% ) . A
direct bound <45 {; ; 1€ J} > o Fu in K
will be called the direct bound of the direct substance of

% in & if ¢; = ;. vhenever v; = %;. . (If <{&;
{9: 5 4 € Y73 %  1s a direct bound of £ in .k,
then it is evidently the direct bound of the direct substan-
ce of £ in K .)

I.5. Lemga: Let & be a full subcategory of a category

K , and ¢: 4k — K the inclusion-functor. Let disgrame

7, ‘f} be directly equivalent in _& . Let every direct
bound in K of the diagram ‘g ¢ be the direct bound of
the direct substance of ¥/ in R . If ¢ preserves the
direct limit of £ , then it also preserves the direct li-
mit of ‘q . :
Broof: Let <a;{v ; < €4 ) or (bi{uy; 4 €271

be direct limits in K of the diagram 5: J — A or

t: ) —»k respectively. Let (c; {¥s; 7 €eF1>
be & direct bound in K of ¥/.L . We must prove that the-
re exists exactly one norphi:mn«,. 1g K such tpat




-

V,. for every ;. € }"' o Since ‘y& = 1,5,, when~
ever wy = %, , the mapping g such that (w; g = Y
maps the set @ onto the set of all 3 . But P‘% -

= Pr , and therefore g - meps the set 7 onto the set of

all y; . Now we shall show that (c; {(2;)g; i€ WA

is the direct bound in K of ¥t . If 1, i"e J7, 6 €
€ Hy(i,47) , then <v; ,(6)F, 4, >e1;,1-¢  conse-
quently < ,(€)F, v, )= <uz, @)Y, v, ) for some
7:7°¢J7, pe Hy (G, 3°) . But then y; = (@)Y %, »
and therefore (;)g = '(o’).?‘” (%.,) g - Now it is easy to
see that a morphism o« in K 18 the canonical morphism in

K of the direct bound <c ;{(%;)g; <€ J” 3 ) of

F, Af and only If w; . & = Y;  for every zeJ7 .

I.6. Legma: Let R be a small category, and F a
disgrem in & . Then there exists a category -f, such that

1) Je:-— &7 = {a} ; & 1s a full subcatégory of -k,
(denote by ¢ the inclusion-functor); there exists a di-

rect bound <(a; {7, ; 1€ J7}) of F T 1in A, such

that , _

a) ir (-b'-;{zy_‘i ;2 € ¢ > 4is a direct bound of £
in & , then there exists an fe HA, (@, &) such
that 1);:.1’3% forall 2 € J7 ; i

b) it £, f'e Hy (a,c), e+ a, f+ £ , then
v; . f £ . f gforsme e J7 .

2)I* $: b — K  1s a functor and §$  has a direct
lm‘t_in K , then there exists a functar ¥: 4, — K,
unique up t.o natural equivalence, such that T ¥ = Q
and that < (@) ¥;{(y)¥; 1€ I7} ) is & direct

-14 -



limit of ¥ in k& . If 4 4is a strongly inaccessible
cardinal with card J™ < ¢ and caxd £™ S 5 , then
card k)Y £ « Moreover, if card H, (¢, d) < &
for all c,d e &
c,de k7 .
Proof: I. Denote by A the set of all direct bounds o =
=l i {¥%, 5 v € T73)  of the diagrem F: T — &
in ko (A= @  1s not excluded.)Let A be a set of ele~
ments f_ , where ot varies over A , such that A n k"=

then caxd H&b’(c,d)< H for all ~

’

=¢,-f;c++'x, » whenever ac+oc'.For{ueH&(-8;c,c),
put £ . e = f, , where a’=<c3 {9 - @mste I7Ide AL
Set 4, = i) F for 1 € U7 . Let I be a set of ele~
ments ?r: , where 7 varies over J? , such that 17: #* 7—):-,
whenever < % <° and LIV(Zx<I)u (I =x2Z)]AZ=g gor
Z=Ah"uv A . Put 7 "Fac::%,cc . Denote by @

the set of all couples (f,, ¥; ? such that .4, = 4, .
Put .,V 2y U, 0=t (% . 1.,), 7, ) . It 18
easily shown that this composition on @ 1is associative.

Let ¢ be an element, ¢ ¢ Zu(ZxI)u(l X_Z) >

set = =0 {e} ‘aMd €.6 =6 .2 =6 for every

6 e @ . Put 6.#ﬂ=-ﬁﬁ whenever 6’__.—.-e,/3&A

and 6 -f, = 1. (% . ;) whenever 6 = £ , 7; )€
€@, f3 & A . Let a be an element such that a ¢ A7,
Let A" be a category with the following properties: (&™) =
= kv {a}, 4 1isa full subeategory of A* ; if
dre &%, then H . (a,8) 1s the set of all £ such
that Ay = & ; H,, (&,a) is the set of all couples

{ @, v, > wvhere (a,eHh(b,.A‘.) amd H x (@, a) = .

-15 =



The definition of the composition in 4™ 1s evident (of cour-
se, if A = , then = = {e}, H‘l&* (a:,»&)= # for eve-
ry & € £ ). Denote by ¢ *: & — &* the inclusion-functar.
Let now R be the following relation on (A&*)™ :
C@,% > R .(6)F, %, for every i,2'¢ J7 , 6 €
€ Hy (i, i’) . Then evidently (e, > f =<{(.(®)F,7.>-
«fo for all oc € A , and lemma I.1 and note I.1 may be
applied. Put & = h*/R - Set € = (¢) 1/R y Y =
=',C<-¢A1","I—f;>)"/g-, T = ? '1/R .

Evidently &, satisfies 1) from lemma I.6.

II. Now let $: & — K  be a functor such that ¥  has
a direct limit in K ; demote it by <a’; {v;; ¢ e I ).

)

We proceed to define $*: &* — K . Of course $* 1s to be

the extension of $ ; put (a)()f‘- Q ama (e, 7 ))§*=
m(@). vy, (£.)F* = £, , where £, 1is the canonical
morphism in K of the direct bound < (,&;0)5;{(%")45;
1 € J73%) . Evidently, if x Rz’ , then__(x)@*=(z’)@*;
consequently, using lemma I.l, there exists exactly one

¥: k,— K suchthat §*=1,.%.

III. It is easy to see that ocard Hp (&, a) =

£ caxd, S Ha (4,5, ) for every b e k7. For b e &7
set A, = {xceAs b =47 then Ay < caed TT Hy (5, ,4);
of course ca»w’.HA‘(a—,»e*) £ cand Ay for all &«
€ &%, caxd He, (@,2) € m‘d;g, A\,;tf"’I{COnaequentLy, if 4
is a strongly inaccessible cardinal number with card J7< &
and card k™ £ # , then evidently card kjvé ¥ . More-
over, if casd Hy (c,d )< H for all ¢, d & A", then
caxcl Hy (c,d) < 45 forall c,de k] .
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_l_ggn: It is easy to see that the following lemma can be proved
eguily: )

Let & be a small category with a system of .n_ull morphisms, #
a diagram in & . Then there exists a category &, with a
systén of null morphisms such that statement 1) from lemma
I.6 holds, and that for every mll functor $: .k — K such
that ¢  has a direot limit in K there exists & null
functor ¥ : 4¢, — K  unique up to natural equivalence,
such that TW¥ = ¢ ama that <(@)¥;{(v;)¥; 2 € 077>
is a direct limit of F¢ in K .

The proof of lemma I.6 should be modified as follows:

If o\'.-(&i'(%,.,g ; ¥ € J73 ) is direct bound of F
in /& such that all ¥, o @re null morphisms of 4o 5 then
denote f, by &), o Evidently ) - = ), for every
€ He (& . &, ) « The category &k, may be constructed
as in the proof of lemma I.6, changing only the relation R:
put R=R, U R, U Ry , where <, % > R, {«.(@)F7, )
for every i, i€ J7,6€ H, (i,17); <, % > Ry <», ¥, >
for null morphisms ,V, wme Hy (e 5, ), Ve He Ce,s,,)
and every i,i’e J7; <a),V; > R, (@, v, > for
every i, i€ J7 .

I.7. Lepma: Let /& be a full subcategory of a catego-
ry K , let ¢ : R — K be the inclusion=-functor. Let
there exist a disgram % in & for every a € K7 such
that a =| E-’wa“' t| . Then ¢ 1is F'-_-pru'ervina.
Proof: Let a diagram ¥f:Y —» k have an imverse limit < ad;
{g5 7€ 2732 in k . Let <a;{1;; €773
be an inverse bound of ‘gu in K . We shall prove that
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it hae a canonical morphism in K . Let §:J — & be a dia-
gram such that the direct limit of £+ in K is (a;{% ;
i€ J9}>.Set A, =(1)F . Evidently the couple <4 ;
{v; 133 F € J73) 1s an inverse bound of ¥/ in K for
every 4 € J7 ; denote by g, 1its canonical morphism in k.
Now it is easy to see that the couple <(d; {g;; <€ J”})
is the direct bound of 3" ¢ in K ; denote by + its canoni-
cal morphism in K . Then 7; . f.gs=v; .y  for every
A e}" » and therefore f. g, = i for every
7 GJ’. If also +'. S = 1j for some f‘ , then ne-
cessarily f’= f , as can be shown easily.

1.8. Legma: Let -k be a small category, £ a diagram
in /& . Then there exists a small category K such that A&
is a full subeategory of K , the inclusion-functor ¢ : k—
— K 18 (;z": ,l:;) -preserving and $L has a direct li-
mit in K .,
Progf: I. Let £: J— & be a diagram in a small category
&k o We may suppose that £ has no direct limit in & .
\VeAahall 'constmct a categary K with the required proper-
ties. Denote by A the set of all direct bounds o =
-=<’,b;c; {yfi"jieU”})of F in K . I A=d,
then K with the required properties may be found easily.
It is sufficient to adjoin one object @ to the category
Ak 4 such thet H(a, &)= anda H (4, a) containe
exactly one morphism for every e k”, H@,a)= {2, } -
Coméguantly we may suppose that A «+ & -
- I1. Let &k, be a category satisfying the statements of
lemms I.6. The notation from the proof of lemma I.6 will

be used. Let. S be the following relation on
. -18 -




CLGJ“_: H&,’(c,a«).’(va(—»M'ﬁc = . *)x for ev_ery,

x€A . Put K=K/ ,set v)=(v;)7/ (cf. Bote
I.1)e Set L%: & — K°, L = T . 4/5 .

III. Denote by D the class of all diagrams in & which
have a direct limit in R . In the present proof the fol=-
lowing terminology will be used: if M: K° - H is a func-
tor, m = <¢5{’l',j 3 }’.e}"'} > is a direct bound of
Y M in H , where either Y €D o0 Y=7F,
end if (W {f ;5 7€ 73> = &m, O for G D,
Co3{§;57eF3>=<a;{%’s 1 €I7}) for Y= 7,
then we shall call every morphism o € H, ((eII", d)
such that (§;)0M . w= 7, a canonical morphism of
m (of Y 1 )in H .

IV. Let V  Dbe a directly substantial set of diagrams
from D (cf.I.4) in £ . Let m be a regular cardinal,
e >candl F, e >caraty for all G4 & ¥ . For ordinal »
denote lby. T, the set of all ordinals less than 4 . Let
# be the smallest ordinal such that carcel £ =m . A
transfinite construction will be performed according to ele~
ments of the set T, .

Ve Let he T, , and assume that “7": ¢ T, ,<)> K 1s
an inductive presheaf X) 45 the category K of all small

x) A presheaf 7 1is called inductive if its domain is a di-
rected set P and if P'c P, fi=pun P’ imply that (pn) T
is a direct limit of 7 restricted to P’'.



categories and all their functors, such that(writing K* =

= () bf )E ‘ .

0) K° is the category comstructed in II of the present
proct; ,

1) a) (K¥) = 7 vi{at, k isa full subcategory of

K“ 3 Hew (@,e)= Hx, (a,c) gfor every c € A&7 ;

b) if 4 < 4 then the functor “I“ 1s identical
on all of 4 ,a,,.@:&HK“(a,_,cu {fyr e A} -

2) If m'= 4+ 1 then every direct bound (m) "‘Z:“" ,
where ,m  1s a direct bound in K“ of ¢ O 27«
with either ¥ =& or ¥/ € V , has a canonical
morphism in K« o

3) Bvery category K satisfies the following condition
(x): 4f . £, is defined and if . f, =d.{ for
all « € A , then ¥ = J .

VI. The properties 0) - 3) imply:

a) ('vf)"ﬂ:‘" . f = ¥« for every v € J7,
AeA, weT, -

b) Every direct bound in K“ of every Y ¢* *7%
where ¢ € D , is the direct bound of the direct
substance of ¢f in & . For, u(d;{a;,;;;:e}’})
is a direct bound of T} v* A in K“, then
(e 3{%5 - f; #€F73 ) 48 the direct bound of ¢
in & , vhich mst have the canonical morphism in k.

. Then use (% ).

¢) Every direct bound of ¥ (° # ﬂ;“‘ , Where either
Y=9¢ or ?Y €3 , has at most one canonical morph-
ism in K* . This also follows from (xX).
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VII. We shall construct K*, ac’; , (€ T, ) such that_
the presheat **17: (T,,,,<Y—>K which is an exten~
sion of *7° anmd (&)*'7u K%, (<u,5))"*T= a2 2  will be
an inductive presheaf satisfying O) - 3) from V, For A
a non-isolated ordinal put (K*;fal ;s T, 3> = »E’;)K A7
where K” 1s chosen so that it contains & ,a,.A and
all %% are identical on of all Je, a, A (cf. Note
I.3). Then it is easy to see that 0) - 3) are satisfied.
Thus, let » =t + 1 . Then it is sufficient to construct
K# and o€ ’> o Let P be the set of all direct bounds
in K of gu A gt , where either Y =% or Y €
€ V ,which have no csnonical morphism in Kt , For P =
=@ put K= Kt 3 &_’: identical. Now let P =+ ¢_-
Let £ be an ordinal such that there exists a one-to-one

-

mapping R of the set of all positive isolated ordinal mum=

bers of the set T',,,, onto P . We shall construct K*® by

transfinite induction according to elements of T, -

VIII, Let g € T and let an inductive presheaf 2: .
(T, ,<? —> K be constructed such that(setting H* =
= w)%Y ):

o) H® = K¥ ;

1¥) is analogous to 1), and 3*%) to 3);

2*) if w'= w+ q , then the direct bound (w‘)R zb;w'
_ has the canonical morphisa in H¥’,

We shall construct H% , AL for we T, oo tt;at_the

Preshenf*‘ . (Tus» <2 —> K ,where 5*"g/ is an ex-
teneion of £Y and that(g )"‘f{= HE, 2*14% = 22

will be an inductive presheaf uusrying 0%) - 3%),

Ir % is a non-isolated ordinll. the construction is evident,

4

-



4

IXe Let g = X+1 . Then it is required to comstruct the
“category H% ana .A:’“ (A% =24 . A% far
A < X o of course). Let (QIR=m =(d;{Tz54eF 37
. be & direct bound in K® of % ¢ “ % , where either
y F or *% € V . Then m has no canonical morph-
-tem in K*  and thus d = a . Set (7;)%L* = 1;
denote by 9‘.0 the canonical morphism of the direct bound
b5 {25 - fc; 7 €273 1n H* (ef. part IIT of the
 present proof). Now use lemms 1.2, writing H¥, H* instesd
of 4,4 andputting & = '&Trb-,h ‘%2 | whenever e
eV ,t=-a whenever ‘L = ¥, amd putting o« () =g
for every oc € A.Denote by t*: H*—> H* the inclusion
functor. Let Z be the following equivalence on (H*)™:
PZYEP.t,7 T oredefinedamd B .f =
=% .fx forall cceA ., Put H*= HY% , A% = L*."/Z
(cf. Note I.1). If « € H,x (4, @) is such that
@ - Tx = G, then evidently («) 77 1e the canonical
morphism of the direct bound (m)#Y* A% in H% .
Indeed, putting < &3 {§;; 7€ }7} >=1¢7%~¢. whenever
GeV, aadlb;{f;;F€)74>=<as{@)*Tt 24%;1e))
whenever Y4 =% , there 18, - L= -G = 17 * T
for all 7 € 1%, c € A and thus (§;.w )1/ = (1) 17 -
Evidently conditions 0*) - 3*) are satisfied.
X. Then, using tranet:lnite induction, the inductive preaheaf
Py : KTy ;<) K satistying the statements 0*) - 3*) is
defined. Set (K*; {A} ;weT,})>= mx rd,
put 9¢) = A7 (where K” s s0 chosen that it contains
A ,a, A and thet all A% are identical on all of k, a,
A ). Then, evidently, cond}j:zizon: 0) = 3) are satisfied



for the presheaf **’J” | Using transfinite induction,
the inductive presheaf “7: (T, , < > — K satisfying
conditions O) = 3) is defined. Of course we put < K; {ae. 5
s €Ty 3>= Zimk, *7°, wnere K 1s 80 chosen that it
contains & ,a,A and that all 9¢, are identical on
&, a , A . Then evidently & is a full subdategory of
K,
{()a,; 4 € Y°7 > 1s the direct bound of F¢ in K .
XI. Now we must prove that ¢ preserves direct limits of
all diagrems in & and that F¢ has a direct limit in K .
Evidently K satisfies condition (X ), and therefore eve-
ry direct bound of Y+t in K , where ¥4 € D , 1s the.
direct bound of the direct substance of ¥/ in & (cf. part
VIb) of the present proof). Using lemma I.5 it is sufficient
to prove that ( preserves d:lreét limits of all % e v
and that £L has a direct limit in K . Evidently, every
direct bound in K of ¥f( , where either Ye V¥ or Y =
=7 , has at most one canonical morphism in K ; this fol-

L = t°. 9, 1is the inclusion-functor and <a;

lows from (* ). We must prove that it has at least one cano-
nical morphism. Consequently let {d;{1;;4€ 27} >=m
be a direct bound of ¢l ¢ in K , where either Y € ¥V or
Y =F, Y:F— 4 . It is sufficient to consider
the case d = a . We shall find <« ¢ I, and a direct
bound m' of Y L% = in K* such that (m 2z =
=m . I j,5'e}”, peHy(F,7’) , then there exist
e » 15 1] € (K“*)™ such that {’; =@ Y-
{,,, (7(’ )ae‘, =%, (:{,, )ae“, = Y;, + For ; € }" set

H,{;,j,) Mz = (M uM)x

M, = 4,3") M =
j j'e 7: 3 ﬂ J ) r s ";?l
_ x ﬁ:
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It (6,6/) ¢ My, ‘them thefe existe & 1. e T,

wach that (x5) 475 = (7 T L Pt =
“,”T;M Vo oo Since cawLn.>uud}, there 18 2, <
.mtusmquv and 7; = q’)y" ‘

'Bhon m'=<a; {9(, i # €732 is a direct bound of
X A 4’.7‘,"‘7' in K% . Consequently (m?) _79’:2“:"' has
the canonical morphism ia K#+1 | and therefore m has
the canonical morphism in K .
XII. ( preserves imverse limits of all diagrams in K ;
this follows from lemma I.7.
Note: It is easy to see that if .k has a system of null
morphisms, then K algo does (no change is necessary in the
proof ,only use Note 1.6 and lemma 1.2 B instead of kmma 1.6 .md 12.A).

~ I.9. Legma: Let & be a snmall category, let G be a
set of diagrams in k (ora class of collections in

4 ). Let 7 be a diagrem in & (or a collection in K ,
respectively). Then there exists a category K with the fol-
lowing properties: ’

1) & is a full subcategory of K , the inclusion-functor

L : kR = K is (@J’,rz)-preeervingand e
has a direct limit in K ; K — &% contains at most

one element.

2) It d:h — K 1sa @?-preeervihg functor such
that §§ . has a direct limit in K’ , then there exists
a §': Ko K’ , unique up to natural equivalence, such

- that d = L. emd ' is & L =preserving and
(FY ¢ =preserving. 7
Moreover, if /4 is a strongly inaccessible cardinal such
mt‘m&”éx’wfsz 5,0l Y < for



evaﬂ_ﬁeﬁ',_ cand G = # , then card K™ = 4 .
Moreover, iIf cardd G < H, cad Hy(e,d) < K for all
¢,d ek’ , then caxd Hy(e,d)< H for all c,d € K.
Hote 1 : The proof of lemma I.9 is similar to that of lemma
I.8. But in the proof of lemma I.8 the identifications (such
that conditiom (') holds) are "too large” for the existence
of a functor $’ with the properties required im I.9.2). In
the proof of lemma I.9 we identify morphisms only when it is
necessary. But then some difficulties arise. The author does
not know if it is possible to take an arbitrary cl as s
G of diagrams im the lemma I.9.
Eroof: I. Let there be given &, &, ¥ with the properties
described in lemma I.9 and suppose that ¥ ¢ & ;
we shall construct a category K with the requi~-

red properties. Simultancously let there be given K’ and
d: £ =K. with the properties from I.9.2; we shall
construct simultaneously &’ ( of course, the construction
of K 1is independent of § ana K’). i
II, First apply lemma I.6. Denote by K° the category, the
existence of which follows from I.6, and by (°: k& — K°
the inclusion-functor. Denote by $°: K°— K’ the functor
with the properties from I.6.2). Let <as3{v;; < ¢ J7§)
be the direct bound of F(° in K° with the properties
from lemma I.6; denote by A the set of all direct bounds
o =l {3 4€I%F) of F dnk ; by £ & He (@, 4)
the morphism such that v; « f =% . ; by /i the set of
a2 £ .
"III. The following terminology will be used in the proof: if
M: K= H is aar\mctor,_ifzswﬁ= Kdi {155 7€ 2747



18 a direct bound of ¥} L° [° , where either %L e & or
W =F , ma1e (s {§;55€)73> = Bmy Y

tor YeG , <bi{fy5 FeJ%y=Xaslv;; €677
for 4 = F , them every morphism w e H, ((&)I, d )
swch that (f;-) M. s = 2; will be called a canoni~
. cal morphism of m (of Y4 °/ )in H .

IV. We may suppose that the categc;ry K’ is emall. If not,
we replace K’ by ite full subcategory containing (&)@
and somse l»&b—_n:.c, Fol .

V. We shall construct the category K with the required pro-
perties by transfinite induction, Put WV = G whenever @
is the s e t of disgrams in & . If G is the class of
cgllectiona in & , denote by V  some directly substantial
set of collections from G (cf.I.4). Let s be & smallest
regular cardinal with m >card &, m >card 'ty for eve-
ry €V . Let £ be the smallest ordinal such that
card & = m . Let o e Ty and let there be construc-
ted an inductive presheat 7 : (T, , <> — K in the
category K of all small categories and all their functors
and its direct bound < K’; {$“; «w e T, 3> , such

that(setting K* = (u)*T ):

0) K and §° are as constructed in part II of the pre-
sent proof.

1) (K*)= k°ufal, 4 ie a full subcategory of
K“; Hw(a,c)=He, (a,ce) for every
c € B ; if u < 4’ , then the functor "".94:’“’ is
identical on all of K, @, A -

2) It w < 4, w' s isolated, then the following con- ’

dition holds: if »m 1s a direct bound in K™ of some
o - 26 -




Y A “ , where edther YL e &  or ¢h = F
then the direct bound (m ) *Z %" of Y (° *T“ pas
exactly one canonical morphism in K« .

VI. We shall construct K* ,s¢? , & & such that the
presheat **177: < Tyes 1< ?>—> K  which is an extension
of *77 amd  (A)*M'T= K*, 7% 2 %, will be
an inductive presheaf satisfying conditions 0) - 2), and

< K';{gS“’;ueTj,,J) will be a direct bound of **77”

in K . If % is a non-isolated ordinal, the construction
is evident. Let 4 be an isolated ordinalhmmber, A=t +1.
Then K? will be constructed by transfinite induction. Let

P be the set of all direct bounds in Kt of all

Y 1 7%, where either Y e ¥ or ¢ =F , which
have no canonical morphism in Kt 3 suppose P #4a o Let
fv be an ordinal such that there exists a one-to-one mapping
@ of the set of all positive isolated ordinal numbers of T,
onto P . Let _iETrp, y and let there be constructed an
inductive presheaf 2¥ : (T, , < > — K  and 1ts direct
bound < K ; {¥%; weTyg})> , (setting HY= w)%f )
o*) H® = Kt, Yo - @f ;

1*) 4s analogous to 1).

- 4
2¥) If w’'= w+ 1 , then the direct bound (w ‘) L

o
has a canonical morphism in H w’,
VII, We must comstruct H%, 2*'#% : HY 5 H® ana §% .
If ¢ 1is a non-isolated ordinal, the construction is ‘evident.
Thus let ¢ = X+ 1 . Let (@) =m=<{d;{y;; 5€}732eP
be a direct bound in K? of ‘@ e 4,7" ; where either ﬂév
(] .
KX —>
or ‘Q=§‘. Set (b;{f,;g.e}"’})’m*q
whenever wé 74 and A4 {f;'; j.é,}r}>=
-27 -



c(d:) {(‘v‘,;“)éft L%, i e -7’3«)17 f‘he,”e';r Y - 7
Since # hes no canonical morphism in Kt ,_. 8o that & = «.
Denote by g, the canonieal morphism of the direct bound
<&;i115- tigeli)or Y ¢ . The following relation on
L= L)y Hux (e,0) will be defined: ,
PSP P=C G PO A fg F e T
PRI P 0.9 71 "< 6. g0 7" 2 e -7 (A0, SE0-7
Set S -,g, Sn. -, Then it may be proved:
a) 411 §, and 5 are symmetric;
b) if @ Sp’ then P, @” are from the same object to @ ;
e)arf.r=1f,. vy’ emy,yreh " thengy-r=% -0
4) if pSE’ then p-Tfg=p’. fy forall B A;
¢) £ 0 S0’ aml 6.0.%,6.0. 7 are defined, then either
6.0. % 56’,’0'-1‘: or 0.p. 7 ..6'.p'-1:' ;
£)4f £ .7 Sf 5, then g .7 S Fcr - ¥ -
Denote by S, or S* the smallest equivalence containing
5,;‘or 5 respectively. Since §, € S, ., , there is 8™
='k514 5,: . It is easy to see that b) d) e) remain true
also if we replace S- by S*, Now we prove that f£) also
"does: let % - 7 S*f,‘/ 3”5 then there exist. z, ,..., %, €
€ Hx (@,a) such that 2= .0, %, =f,. 7" and 2,52, 44
for 4=1,.., m~1 . Consequently z;, <= 2,..,m-1 ,may
be expressed z; = G - %, % -But G . g - %, for some S e
e A.Now use f). ]
Now it is easy to see that lemma I.1 and Note I.1 may be

applied and if we set H*= H"/;_;* then f, .y =fo 7 ‘
implies @ .7 =g, -7 in H*. set 7(;- (g5 12 7/5*-N°"
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lemms I.2.A may be used; we shall write only H*, H** instemd
of £, and put &rl%‘q |  Whenever Y eV, b= a.
whenever %= ¥ and @)= Gy - Denote by ¥ : H*— H**
the inoclusion=functor. Let T be the following relation on
(H**)m™

(€53 ) ond- T 23 _for every jeJ°. Bvidemtly lemme I.1

and Note I.1 may be used. Put HZ = H**¢ Z+1f%u 7. 0% .
Yy @ =)V . Then, evidently, & is the canonical norph;‘
ism of the direct bound (»m)"":f;" in H% , and 2+1% 15 an
inductive presheaf satisfying conditions 0%) - 2%),

VIII. Let (K5 {¥"; weT;}) be & diredt bound in K of 2,
let ¥°< §*; it is sufficient to find ¥2:H% K’ such °
that 2% . ¥2 = ¥, Since ((BI¥*5{(§)¥%; 7€ }7)is the
direct limit of ‘Y $ , there 1a (G )I)¥* = w'- (£ ¥,
where by ' 1s denoted the candnical morphism of the direct
bound ((a,)@t_; «{_(a;)@t; F€X78> . Consequently if
@ S*p¢, there is (0) ¥* = (") ¥ > . Using lemma I.1 there
exists exactly one functor ¥*: H* —» K’ such that ¥*=
= {S*Y*’ Then, using lemms I.2, there exists exactly one
furctor ¥**:H**— K’ such that ¥* = L*. ¥** anq

(@) ¥**= @’ , Now it is easy to see that ([(f)7/gul @ )¥*%
-(5(;_)1{** for all 4 &€ J7; consequently, using Note I.l,
there exists exactly one functor ¥'%:H%®— K’ such that
YK Ve » Y2 , Therefore "*'3&*-‘!’ -y, e H‘K' (
(L)Y, @¥¥), @'+’ then ([ 14+)¥*. o4 O 0% A

for some 4 € J” . This implies the unicity ¥2 .

IX. Using transfinite induction, one may construct an in-
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ductive presheaf ™Y satisfying conditions 0%) - 2%),

Now set CHy{Yp;weT,3)>= mx 74 , aenote by ¥
the canonical morphism of the direct bound < K’; {¥ ™ ;-
weTp3)> o ?f in K_.Ir P=g, put # =K,
Y= Pt ,4,:KE - H 1s identical.

X, Next, define the relation Ry onlL=~U, H, (c,a) for
every 4 € T, as follows (denote by R}  'the smallest

¥

equivalence containing R,,_) :6./8 R,6. 3 whenever there

exists a direct bound ,m in H of some Y . * T

where either Y € V  or Y = &, euch that B and Y
are both canonical morphisms of m in H . I y €
€ T, , ‘then 6.8 Ry 6.7 if and only if there
exists 8 Y € VU {F} such that §; .8(4 uzg,yﬁ:)_%-a*
for all 4 € )7 where < &;{§;5 e 173> = .&Tn—;b A2
whenever ‘%L e V and <‘b’iif.$jj FE€XF3> =<a;
(WPt L, + € I73) wﬁgnever Y - F. Put _R=

= U R¥ . Using transfinite induction, it may be proved
“yel ¥ - x)
casily that B R 3 implies B .-f = 7 - T«

x) Thus the relation R on L such that 8 R 7 if and only if

B.fe=7. % for all €eA is greater than or equal to R.
Compare with the proof of I.8.

In the present proof the following evident fact is used with-
out any reference. )

Let W be an equivalence on L'eyc' He (c,a) (where o;xe substi-
tutes C by H*, H) such that if AW 7 then 7€ H (c,a)

for some ¢ € C%, B.f=y.f. for all xeA and if6.B.7 is de-
fined then either 6.3 .% W6.7.7 or 6.8.%=6.7y. 7.Then if

?, 9’6 C™, @) 1Ay = (3)Yiw, then necessarilyW u A #7.
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for all x ¢ A Jand (AI)¥ =(P)¥ . Put K*» = H/g
#ipb= Y- Tk ylet $” be the functor such that ¥ =
= 9%,

XI. Now we prove that **'7°: <T,,,,< > = K ama < K’;
{%; m € T,.43) satisfy conditions 0) - 2). 0) and
"1) are evident. In the proof of 2) it is sufficient to con-
sider M.'z-.-/s only. Thus, let 4 < A , let m be a
direct bound in K* of some ¥ ¢ * ":f;'“aﬁu 47, “where

either Y €V or ‘Y = £ . Then the direct bound
(m)* 3t . 4, has at least one canonical morphism
in H , as follows from the construction of H ; thus
(m) Avd 7;" has at least one canonical morphism in
K?® . We shall prove that it has exactly one canonical
morphism. Set (& {f; ;7€ J}>= E’Wh Y/ whenever
YeV anally{fj14e) 1) =<as{@) 7 F,54e I7)
whenever 7} =5 . Let 8 and ) be both the canonical
morphisms of (m )**77.*  in K* . Then tiere exist
B, TeH™ euchtnat (B)p=f, (F)lg =9, §7-
A RE§;-F forall jeJ.simee R=U Ry,
one may choose % j € Ip for j € J7 such that
$;-BRy; §;- 7. put @ujw Y3 5 then i €Ty
and 3 Ri;q-‘t ¥ , and therefore f3 = (/3) "/R=('7‘)%= 7.
XII. Using transfinite induction, one may define an inducti-
ve presheaf 7 in K satisfying conditions 0) - 2), and
ite direct bound < K';{3%; A €T, }) . Put <K;{T ;
reTpid= E"_‘-”K “7 ; let ' be the canonical morphism
of the direct bound éK’; {3* »€eT, 3> in K . Thenje-
vidently, & 1s a full subcategory of K ; put ¢ = 1°. 7 -
Obviously = ¢ - J’ -30 -



and <(2)B" {(U) D'y i€ IT}) = Lmy, FO .

XIII. Next prove that ( preserves direct limits of all
diagrams from V m that a; {1y ) ; €€ I77) s
the direct limit of F¢ 4n K . Let m be a direct
bound in K of some ‘% L , where either % & W  or

Y = & . Then there exist .5 € T, aod a direct
bound A 4n K?* of ¢ 1° “74*! such that m =(M) 7
(the proof is analogous to part XI of the proof of lemma
I.8). Then () ”’17:""4 has a canonical morphism « in
K**? . Obviously (w) T5.4  1s the canonical morph-
ism ot m in K . If» and v’ are both canonical
morphisms of m 4in K , then there exist te T, , ¥V,
V’e (Kt*)™  and a direct bound m of ‘@ . *I7¢ ,
such that (M)f'=m, F) = v, (V)T =" am
. ¥V, %’ are both canonical morphisms of i . But then
() %7 = (5) *T¢*1 | and hence ¥ = »’

XIV, The proof is complete in the case that W =G 1s a

set of diagrams in & . If G is a class of collections in
4 and V  is a directly substantial class from &

then we must perform another identification. Let V' be the
following relation on L=”L'J<’ He (c,a) 6.8V, N
whenever there exists a direct bound m = <a; {%y; P e}r}>
in K of some collection Uf¢L ,where ¥f € G ,such

that /3 = 13, ¥ =795 ,eand f; -f;:z,where

(b; 1§55 7 € 273> 1sasumof Y in A& | if
yeT, , % >0, put63 V, 6.7y whenever there exists

a collection ¢L € Vou{&F}§ such that f? RBIUVY uA)
§. Y forall % € J° where { & {§;54e271>= 1""’1’4
whenever YL € V/ | anda <4; {P;;ﬁ_ ?e}'}ﬁ(a;{(z{)z}iem)



whenever UL = F  (where V,;ﬁ denotes the smallest equi-
valence containing Vi ). Put V = ,EJ..; V,; . Then the
category _K/ v  has the properties required in lemma I.9.
(If a1l the YYe & and F were not only collections,
then this lgct identification could possibly give rise to
further direct bounds.) .

XV, Now we shall prove that if ¥ is a strongly inacces-
sible cardinal with card K& H, caed F< o, card Y < ¢
for all Y4 €G andcaed G & H , then caed K™ & 4.
Lemma I.6 implies caxd (K°)™ & & . It is emsy to see
that # & 4 . Let an » &€ T, Dbe given, suppose
card (K“)Y™"< WK for all .« < 4 ; prove that

card (K*)™ £ 4 . If 5 1is a non-isolated ordinal,
then this follows from lemma I.3 B. Let » = t+1 ; sin-

ce card G 5 K thereiamdfpémd%q,* (
’ z€fu{3’}
(le,fo(@)'g,a.))g #. 1t geT, andcaed(H)™<g 4

‘for all % < 4 then evidently card (H%)™ £ & ;

?

this follows from either lemma I.3 or lemma I.2. Then, using
lemms I.3, caxd (K*)™ & #4 , and thus caed K™ & & .
Moreover, if card G < H and caed Hy (c,d) < 4 for
all ¢, d e &°, then s < H,cardP< 4 ,and it nay
be easily proved that caed H, (¢, d )< 4 for all c,
de K7 ) ' )

 Note 2: Tt is easily seen that the following lemma also holds:
Let 4t be a small category with a system of null morphisms,
‘G & set of diagrams in & (or a class of collections in

AR ). Let F bea diagrem in & (or a collection in

,ﬁ; s respectively). Then tho_re exists a category K with
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a system of null morphisms such that statement 1) from lem=-
ma I.9 holds, and 2°) if & : R — K’ 1s a null functor
such that £O has a direct limit in K’ and & pre-
serves direct limite of all diagrams from & , then the-
re exists a null functor $% K — K’ , unique up to natu- .
ral equivalence, such that & = ¢ - $° anmd J’ preser-
ves direct limits of all ¥} L , where either ¢ = &
or *@ e G . N
The proof of lemm& I.9 need npt be modified. It is suffi-
cient to use Note I.6 in place of lemma I.6 in II, and lem=
ma I.2 B in place of lemma I.2 A in VI .
_Note J: Obviously lemmas I.9 and I.l imply the following
proposition: .
Let & be a small category,card Hy(e,d)= 1 for all
c,d € &%, let & be aset of collections in & . Let
# be a collection in 4 . Then there exists a category
K such that card Hy(e,d) = 1 for all c,d € K7 amd
statement 1) from lemma I.9 and also the following state-
ment 2°) hold.
2) 1 @ : bk — K 18 a @-_’-preeerving functor such
that £¢ has a direct limit in K’ and if caed Hy, (¢, d)<
€ 1 for all ¢,d e(K’)”, then there exists & $": K — K/,
unique up to natural equivalence, such that § = ¢ - $’ and
that J’ is G o ~preserving and (ﬁ -preserving.

II. Embedding theorems for small categories.

In the present section there are given some theorems which
follow from lemma 1.8 and I.9, namely theorems II.3, IL.5
-33 -



and II.7, . )

II.1. Definition: Let S Dbe & set which is ordered by
=3 . Let {4, ; »eS} be a system of small categories.
We shall call it monotone if 4, 1s a full subcategory of
Ay, whenever 5 -4 4’ . Denote by s A&, the catego-
vy K sueh that K7= U (&, )7 and that every &,
is a full subcategory of K .

Note: Evidently, if 5 € S and YL 1s a diagram in
A&,

%o
preserves the direct limit of ‘% for every 5 & S ,
4 & A, , then the inclusion-functor (, : J%."",;%Js A,
also preserves the direct limit of ‘€L -

I1.2. Lepma: Let 4 be a small category, G a set

, and if the inclusion-functor ( 20 ’&‘% — &,

of diagrams in & (or a class of collections in & )e
Let V be a set of diagram schema ('qr a set of discrete
categories, respectively). Then there exists a small cate-
gory K such that: '

1) & is a full subcategory of K , the inclusion-func-
tor L : b > K 1is (F, ﬁ)-preserving. 1t Y 1s
a VYV -disgram in -k , then ¥/ (L has a direct limit
in K , Every 2 € K7 s a direct limit of a Y¢ ,
where ¢ is a |/ -diagram in & .

2) 1t K’ is a V—’—ccmplete category and if § : & — K’
is a T? =preserving functor, then there exists a func-
tor §’: K— K’ , unique up to natural equivalence,
such that & = L - §‘ and P’ preserves direct li-
mits of all diagrams Uf L , where ¢ is a V -dia-
gram in A .
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Moreover, if 4 1s a strongly inaccessible cardinal such
that
(a) caxd &A™ = # and card G = X ;
(b)) heV=>card &™ < &4; YebG=cad@f<b,
then card K™ = #A -
Moreover, if
(c) eard &G < o , card Hy(e,d )<t for every ¢,d e &7,
then card HK(C,C“< & for every c, d € K7 .
Proof: Let & be the set of
all diagrams from @ which have a direct limit in & .
The isomorphism of small categories is an equivalence-rela-
tion on V , denote by V  some choice-set. Let V be
the set of all V—diagrams in & . Let -3 be a well-or-
dering of V ; denote by 4/, the smallest element of
V' . Denote by Vj,, the set of all e Vi, ¥3U.
Using lemma I.9 one may construct (by transfinite induction)
the monotome system {K‘u’; U € V§ of small categories
(denote by L ?; : KY 5 K% the inclusion-functor) and
the system {G% ; U e V§ and, if some K’, § : o — K’
satisfying statement 2) are given, also the system { §% ;
WU € VW ¢ such that K% . & éﬂu‘= b ; G% = G ;
G% 1is the set of all diagrams YL ¢ ?'li’ , vwhere YL €
eG U Va9 @?L : K% K’ ie a functor which preserves
direct limits of all disgrams from G% ana 12 - 3 U,
then @qc- A :}“, . PU , L 3; prescrves direct limits of
all diagrams from G7 and inverse limits of all diagrams,
V .y, hes adirect limit in K% . mvidently, K=
='uLejv K% has the properties required in the lemma. If

th 1s a strongly inaccessible cardinal satisfying (a),(b)
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(or (a),(b),(c)), then evidently caxrd WV < # ; consequent-
ly caxd K™ 5 A . (or, moreover, card H (c,d) < H
for every c,d € K7, respectively).

Hote: a) It is easy to see,[3], that if .k 1is @ full sub~

category of K , every a € K7 1s a sum of a collection

"in A& and every collection in A& has a sum in K , then

every collection in’ K has a sum in K .

b! It 1s easy to see (using I.9,Note 3) that lemma II.2

remains valid if &, K, K’ are partially ordered sets

(1 K is only a quasi-ordered set, take some of its ske-

letons containing .k ).

¢) Thus using a) b) we obtain the following proposition

(choose V to be the set of all discrete subcategories of

A _

Let (&, 3 ) be a partially ordered set, & c e & -

Then there exists a complete lattice (K, *3) such that:

1) 4o © K, the inclusion mapping ¢ : & — K is

strongly order-preserving (i.e. if a,fre h then a -3
S e=>a 3 b )1t heG then supy h =
- ‘*“f’K"" whenever A(_&fb‘hh exists, if /o c f¢ then
infy v = inf b whenever «nfy /. exists.

2) It (K’, 3 ) 1s a complete lattice and § : kb —» K’
is an order-preserving mapping (i.e. if a, b ¢ & ,
then & 3 & =3 (a)d 3 (&)P ) which preserves least
upper bounds of all elements of G , then there exists
exactly one mapping $’: K — K’ such that $‘ preser-
ves least upper bounds of all Hc K and ¢’ =& -
_ IL.3. Theorem: Let & be a small category. Let G be

a set of dlagrems (or a class of collections) in 4 , let



V be a class of diagram schema (or a eclass of discrete ca-
tegories, respectively). Then there exists a V_’-conplete
category K such that:

1) R is a full subcatego.ry of K , the inclusion-functor

L:k—K is (7(:;, ;:,‘z)-pr_eeerving.

2) I K’ 18 a V)-oomplete category and it & : h — K’
is e ?-preserving functor, then there exists a ET” -
preserving functor @’: K — K’ unique up to natural equi=
valence, such that ¢ = L. $‘. If V is a set, then K
is a small category. Moreover, if M is a strongly inac-
cessible cardinal satisfying (a),(b) from lemms II.2,
thencand K™ g H . Moreover, if (c) is satisfied, then i
card Hy (e,d) < 4 ~ for every c, d e K7,

Proof:I. First suppose that V' 1s a set. Let 4« be the smal-

lest regular cardinal su;\_tﬁ;st M > card ™ whenever A&

€ V . Let # be the smallest ordinal with card i = 4 -

Using lemma II.2 ofle may construct (by transfinite induction)

the monotone sys¥ém { K““; « € T, } of small categories

(denote by t “ : K“—» K the inclusion functor), the sys-

tem {G“; «w €T, t,and, if K' amd $: k- K’ satisfying

2) are given, also the system {$*“; «« € T, } such that

Ke= k&, G°=G ;3 =3 ; G“ is the set

of all diagrams L L5 , where Y &

€G ,andof all Y4 ¢ % | where ' < ,and L s

V -dtagram in K* ; . “, 18 “(ET": F'_i)-preaerving;

§“: K®—» K’ is a8 &% -preserving functor and Q“"=

=LY% 9% ; A 1ea V-disgramin K“ , then

9 o %!  has a direct limit in K“*" , Then evidently
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K -ugJ_r K*“  hes the properties required in the theorem.
"

II. Now let V Dbe a class. Isomorphism is an equivalence

—

relation on V , denote by V some choice-class, For eve-
ry cardinal 4  denote by V,, the set of all A e V
such that cardl A”" < - . Using part I of the present
'progr one may construct (by transfinite inductiop) the mono-
tone gystem { K, ; # € N} of small categories ( N
denotes the class of all cardinels) the system {G, ;me
€ NI}, and, if there are given K’ amd $: k — K’ sa-
tisfying II.3.2), also the system {J, ; m- € N} such
that: &k = K°, G, 1is the system of all VY, -disgrams

e d
in K, ; if # < mr, then the inclusion-functor (7% :
— 2 £F -
K, — K, 18  ((GL%)uG, KT )-preserving; eve-

ry diagrem from @, hes a direft limit in K, _; &, = &,
Pum ¢ Kuw —> K’ 48 a functor such that &, = L P
f;u‘ N < M af‘i @M is G"’V v (ﬁ' Lo’“’ )’ -pre-

serving. Then evidently K =W%JN K,. has the properties

required in the theorem.
- IT.4. Note: If V is a set of diagram schema and if e-

very U0 ¢ G 1s a V ~-diagram, then it follows from theo-
rem II,3 that there exists "une solution du probléme d”appli-
cation universelle pour E relativement a la donnée de = ,
6 et a” (af.[2],p.43), where "ensembles munis d une
structure 4 espece = -" are skeletons of small V =comple-
te categories, " 6 =—morphismeés” are functors preserving di-
rect limits of all V -dlegréms, "E " 4s a skeletin of a
small category and " oc—-applications” are functors preser-
ving dir.ect Yinite of diagrams from & . Further "solu-

tions du probleme d application universelle” are given in’
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the following theorems. )
I1.5. Theorem: Let /& be a small category, let &y »

0}1; be sets of diagramg in 4 (or classes of collections in
Ak e Let Vi,V be classes of diagram schema (or clas=-
ses of discrete categories, respectively).

—> < -
Then there exists a (V; , V; )-complete category K such
that:
1) &k 1is a full aubcatgg)ry (o_f_ K , the inclusion=-functor

L:hk—>K 18 (G, G;)-preserving,

— P
2) 1t K' 1s a (Vy, Vi ) -complete category and & : 4 >

— K' is a (@:, G, ) -preserving functor, then
there exists a (_EV‘?, K% ) -preserving functor { :
K — K’ , unique up to natural equivalence, such that
$=ved" .1 \§y,V, are sets, then K is a small
category. ‘
Moreover, it & is a strongly inaccessible cardinal sa-
tisfying (a),(b) from lemma II.2 with G = G u @ ,
V=1VYuV, ,then card K™ & #H . Moreover, if
(c) is satisfied, then card Hy (¢,d) < 4 for every
c,d e K7
Proof: I. First suppose that ¥y and . are sets. Let 41
be the smallest regular cardinal such that s >card K RTe vl
let # be the smallest ordinal such that card # = 44 .
To given ., & T, 4,>0 let there be constructed the systems
KGueT 3, {G 5neT } {G;ueT, 7, if some_
K’ and $ with the properties required in the theorem are
given, then also the system { d“; w« € 1:‘0 7 such that:
VK= k, 6 =G, ,CG =6, $°=F;{K“; meT, } is
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s _monotone system of small categories; for v~ < u deno~
te by L : K¥'— K the inclusion-functor; G
G3* are sets of diagrams in K“; $“: K“ — K’ 1is

€V
& functor. '
dFPr v < M, LY 1s (G‘I , ﬁ_b.v)-pregerving;

—
3V = (o _§“’ amd $“ 18 (G, &_}_.‘_‘:)-preaerving.
3) For isolated « > 0, if .« _is odd, them ¢

- .- -

G = G-“’"' LR, B (G PIUIL- il
Y 1s a V, -diagrem?;
if Y, is a V; -diagram in K“=* then
¢ ., has an inverse limit in K* ;
if u even, then: G = G:-4' Lulg Y g, i
Y is a \Q-diagram}, G = Gl
if O 18 &V -diagram in K“"" then ¢ ( “  hes a
direct limit in K*.
4) It « 1s non-isolated, then K“=_ U K¥, G =

vr<ae

=Y 6,6 = Y Gl B4 I, DY

v i Y

We are to comstruct K“° , G , G;®, §“o ; nowever, this
is simple. If 44, 1s non-isolated, then the construction is
evident. If 4, is isolated, use lemma II.2 whenever ¢,
is even, and the dual to lemma II.2 (i.e. replace "direct" by
"inverse" and conversely) whenever 4L, is odd.

Then put K "uH‘,,, K* , this has the required properties.

II. 1 V) and V, are classes, then the proof is analo-
guous to that of theorem II.S.

I1.6. Using lemma I.B, the following lemma may be prOVed
cuil:
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Lonmg: Let & be gigmn category, V/ a set of diagrams
in A& . Then there exists a small category K such that
A 1is a full aubcategory or K, the inclusion-functor
Lk —>K 1s (lez »k ) =preserving and every % L
vhere ¢4 e V/ , has a direct limit in K.

II.7. Using lemme 1.6 and its dual (i.e. replace “di-
rect” by "inverse” &nﬁ conversely) the following theorems
are proved easily: )
Theorem A: Let & be a small category, V a set of dia-
gram schema. Then there exists & small ( T/_: V) -complete
category K such that &k is a full subcategory of K
and th; inclusion-functor ¢ :.& — K 1s (F, f':z}_
preserving. )

Theorem B: Let A& be a small category. Then there exists
a complete category K such that & 1is a full aubcateso—
ry of K and the inclusion-functar is ( k= ,&z)-pre-
serving. )

I1.8. Notg: If & small category & has a system of mull
morphisms, then the category K from theorems II.7 A), II.
7 B) also does. The theorems II.3 and II.5 may be modified
for categoriea with a~aystem of nul} morphisms as follows
(use Note I.8 and Note I.9.2) in the prpogs):

Definitiop. Every couple { J, /1 ) where J is a small
categoary and fu € J™ , will be called a diagram sche-
ma with a fixity. If J is a discrete category amd s = (J,
then { J, 4 > will be called & discrete diagram schema
with a fixity. Let V be & class of diagram schema with (
a fixity, let /& be & category with & system of mill morph-



isms, Let (U, v D€ V, ana € : X — 4 a functor
such that (¢ )'gf 1s a null morphism for every « € 7 -
Then f will be called @ V =diagram in & . If V
(or W ) is a class of diagram schema with a fixity,
then every category & with a system of null morphisms,
in which every V -diegram (or W -diagram) has & di-
rect (or an inverse) limit, will be called V’-complote
(or W -complete, respectively). If it is both V-
complete and W =-complete, then it will be called
(_V’,_W ) =-complete. )
Theorem (II.3)°: Let /& be a small category with a system
of null morphisms, G a set of diagrams in 4 (or a
class of collections in 4 ), V a class of diagram
schema with a fixity (or a class of discrete diagram sche-
ma with a fixity, respectively). Thgn there exists a V’-
complete category K such that:
1) A& 1is a full subcategory of K , the inclusion-func-
tor L:k —>K is (-1(;, i’)—preaerving.
2)'Ir K’ is a ‘V"-complete category and if §: k — K’
is & G’ =preserving null functor, then there exists
a F-preserving null functor $’: K— K’ , unique
up to natural equivalence, such that § = ¢. ‘
If V is a set, then K is a small category.
Moreover, if # 1s a strongly inaccessible cardinal sa-
tistying (a),(b) from lemma II.2, then card K™ & 4 .
Moreover, if (c) is satisfied, then caxd H, (c,d) < 4
for all ¢, d e K7 - )
Theorem (II,5)°: Let .k be a small category with a system
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of null morphisms. Let G-d , G{, be sets of diagrams in

A (or classes of collections in & ). Let V¥, , V; be

classes of diagram schema with a fixif.y (or classes of dis-

crete diagram schema with a fixity, respectively). Then the=-
hd — J

re existe @ ( Vy , V; ) —complete category K with a

system of null morphisms such that:

1) & 4s a full subcategory of K , the inclusion-functor .

L :h—>K 18 ( 4_3":’, ‘G ) -preserving.

5
2) I K' is a (T/;_-’, VT) -complete category and & :
A — K 48 a (@Z, ‘33'?7-preaerving null func-
tor, then there exists a ( E?‘;‘, E‘\T,') ~preserving nu._].l
functor P’ : K— K',unique up to natural equivalence,
such that & = (. $* -
Ir \QJ V; are sets, then ,K is a small category. Fur-
thermore, for a strongly 1nacceasi_.ble cardinal H the sa-
me conclusions obtain as in theorem II.5.
II.9. Corollary to theorem (II.5)":
Let & be a category with a system of null morphisms; let
4 be a category such that I ={a, b}, ast,
h={e, ,€5,0,3% ,where o ,Bec H, (a,&), & +/ .
Let ‘: >4k be a V -diagram, where V= {<h, {4/}
Let {aj;{v% , v3}) be its direct limit in 4 , let
{&s{7,, M3 3 ) be its inverse limit in 4 . Then it
is well-=known that

[

M, 18 a kernel of (ax)¢f, ¥ is a
cokernel of (¢ )¢/ . Consequently the following theo-
rem follows immediately from theorem (II.5)":

Let R be a small category with a system of null morph=

isms. Then there exists a small category K witha system
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of null morphisms susch that )
1) &k is a full subeategory of K , the inclusion-functor
¢ : & — K  preserves kernels and cokernels of all
m_ax"ph:llml existing in A4e . Every morphism of K has & ker-
nel and a cokernel in K . ,
2) 1r K’_ig a category with a system of null morphisms, in
which every morphism has a kernel and a cokernel, and if
$ : &4 — K’ 1s & null functor which preserves kernels
and cokernels existing in 4 , then there exists a mull
functor $’: K — K’ , unique up to natural equivalence,
such that § = L. $’ and ' preserves kernels and co-
kernels. )
"Moreover, if N is & strongly inaccessible cardinel such that
card & & ¢ , then card K™ g 4 . Moreover, if
card Hy Ce,d )< ¢ for all c,d € 47, then card H (c,d)<
< forall c,de K7, .
‘ I1.10. The theorem for partially ordered sets, analogous
| to Theorem I1I.5, may be proved in the same manner, only using
II.2 Note b). If we choose Vy = I = {4#, 7, where fe, 1is
& discrete category such that 4&; 1is a two-point set, and
if every element of Gy v &; is |4 -diagrem, we obtain
- the following theorem: - )
Let (A&, 4 ) be a partially ordered set, let G, c ke x-k,
G ch x A . Then there exists a lattice (K , %) such
that .
1) S © K, the inclusion mapping L : fe — K is strong-
1y order-preserving (i.e. if a, &€ & , then a < beb
ema=l ), 1rca,bre G then wipy {a, 3=
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*

=nufy {a, 4§ whenever sum {a, b} existe, if (a,
&>e G; then imf {a,b}=inf, {0,067 whenever
%{w,b? exists.

2)If (K’, %8 ) 1saletticeand ¢ : b -+ K'1s an
order-preserving mapping (i.e. if a, £~ & & then a <
S =p(a)P ()P ) which preserves least upper
bounde of all élémgnﬁi of @y and greatest lower
bounds of all elements of &; , then there exists ex- .
actly one lattice~homomorphism &’ : K — K' which ex-
tends § .

III. Embedding theorems for arbitrary categories.

The present section treats the same problems as section

1I; however, it is not assumed that R 1s a small category.

The situation is then rather different.

III.1. The theorems II.7 A) and II.7 B) are incorrect

if we do not suppose that the category -R is small. Moreo-

ver, the following proposition is not true:

If R 1is an arbitrary category, then there exists a category
Kv such thst 4 is isomorphic with a full subcategory of
K , the embedding functor L: k— K preserves sums

of all two-point collections in R and YL ¢ , where Y

is a given two-point collection in & , has a sum in K .

The correaponding example will be ..

given now:

Let M+ be a poaitive cardinal, J,, & set,card J, = m,

denote by A, the category as in the diagram (identiti-

es are not indicated), where 4  varies over T, , and

for 4,4 €T, put 45
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I

Xe

It is easy to see that < M ;{. w ,2°3 > 1e the sum of
the collection {C,D} in e, and that {A,B} has
no sum in A, . Let K be a category which contains
4., as a full subcategory and such that i{A, B % nas
asun in K (denote it by < S {7% , 3> )ana
that < M3{,»Y¢> 1a thesumof {C, D} in K .
We shall prove that necessarily mn.d.HK (A, S) =2 m .Deno-
te by ¢  the canonical morphism of the direct bound
N3 {x, 8} in K .Simce % . g =, 9; -+
*vfj.cﬂ for 1 -]-j. s there ic 3(;.1{;4-99.1)2;
" Now {S3{%*Va3 P- 73D is the direct bound of {C, D}
in K , denote by 7 its canonical morphism. Choose so-
me 1, € Jpp - Then % .T.% .F = .y -p= 9y - % -
@ =Y.k for every i € q::.'rhus T LYok T Y



whenever 7 # 1 . Let now AR be the category obtained
by binding together all lbw (for all positive cardinals
M- ) at the objects A, B . Equip all symbeds for ele=-
ments of (e, ) u (hk, )" , except for the objecta A )
B , by a suffix 44 , and extend the definition of &
as follows: If 44 #+ 4 , then the set H, (C*™, N*),

or Hg (D™ | N*™) or Hg (M™  N*) contains
ex(ctly one morphism, denoted c:,: or oL::; or

" w s
m,, respectively. Put Hh(C‘”‘;M“') ={;4, ;1€ %, ¥

for M + M .1 m + M + A4 put M, %=
A e s R s o e €25 D

“w M R m R
‘f’njw’ d‘l!") :z,-‘m- T /34“} T, M—af,'”" i Az"m“ea‘i 0L o

Then it is easy to see that every 4R, is a full subca-
tegory of K , (M™; { ™, V™}) ig the sum of { C**,
D™ 3 in & and {A, B3} has no sumin R , If
now K is a category such that & is a full subcategory
of K , < M™ ;{fe™,»"™3Y 1s the sum of {C*, D™}
in K and {A, B} has a sumin K , denoted by < S;
{vi, v33) , then necessarily caxd Hy (A,S) & m

for every cardinal m4 , which is impossible.

III. 2. The proof of theorem II.3 is based on a const-
ruction by transfinite induction. However, within the Ber-
nays-Godel set-theory this cannot be carried out for cateso-
ries which are not small, On the other hand, this is poseible
in any model of set theory where classes are modelled by .
sets. The existence of such a model follows from the existen-
ce of a strongly inacceseible cardinal number.

But it is well-known that the existence of a strongly inac~
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cessible cardinal is not provable (from the axioms of the
set~theary), amd Deither consistency nor inconsistency of
the existence of such & cardinal number with the axioms of
the set-theory has been proved. Now we shall lu}apose that
there exists such & cardinal number 4 x) N ind we will .
sketch the construction in this case. Denote by T ;he' ‘
set of all cardinals smaller than # . Put U, = {@] .
For aieT" put o = Uy, Gm U (x Vo),
Ue=VYvepnl, U= J S E PR Then the sets of
the model are all subsets of U , the power of which is
smaller than #» , and the classes of the model are all
subsets of U . The relation €* of belonging to in

' this model is a partialisation of € . The construction
of this model is given in detail in [1].

Using theorems II.3 and II.5 for categories of the model, we
obtain the following result:

If the existence of a strongly inaccessible cardinal number
is consistent with the axioms of the set-theory, then the
following theorems are also consistent with the axioms of the

set~theory xx),

x) The assumption of existence of a strongly inaccessible car-
dinal is weaker, of course, than axiom A 5 given in [11l]. The
construction of a set U to follow is the construction of
universe.

- - o o o v —an

xx) These theorems are true in the model.

- e en e es @0 s 4p ev p e



Theorem A: Let & be an almost-category "’, let & be a
glass of diagrams in .k , let V be a class of diagram
schema. Then there exists a i7’-complete almost-category
K such that:

1) & 1is a full sub-almost-category of K , the inclusion-
functor L : & — K is (E-’ s 3&7 ) =preserving;

2) 1 K’ 1s a V',-complete almost-category and & : R —
— K’ is a @’ -preserving functor, then there exists
a EV" -preserving functor @’ : K.— K’ , unique up
to natural equivalence, such that & = ¢. &’ .

Theorem B: Let & be a category, let & be a s et

of diagrems in &k , V & class of diagram schema. Then

there exists a V’-complete category K  such that:

1) & is a full subcategory of K , the inclusion-func=-
tor L : &k > K is (@7’, &z ) =preserving.

2) Ir K’ is a V’-complete category, and if & : &k — K’
is a @? =~-preserving functor, then there exists a 27’~
preserving functor $’ : K — K’  unique up to natu-
ral equivalence, such that ( $’' = &

x) The notion of the almost-category is obtained if, in the
definition of the notion of the category, we omit the axiom
that all morphisme from one object to another are to form a
set. Notions such as functors, their direct limits and so on
may be introduced for almoet—cateéoriea without any change.
The diagram in an almost-category is a functor, the domain of

which is a small category. A diagram schema is a small cate~
gory.

s > o i 8
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Theorem C: Let & be a category (or almost- category). Let
G, , &; be sets (or classes) of diagrams in & , let .
Vy , Vi be classes of diagram schema. Then there exists a
category (or almpst-categoxjy) K _such that the sta‘l}ements
1) 2) from theorem II.5 are satisfied (or the statements 1)

.2) from theorem II.5, where one replaces "category", "sub-
category" by "almost-category", "sub-almost-category", res-
pectively).

The theorems (1133)' and (II.5)° given in II.9 for catego-
ries with a system of null morphisms, may be reformulated
&nalogoﬁaly. A i
- 1IL.3. Now we shall prove that if G = @ , then theo-
rem III.2 B may be proved for some classes V not only in
the model, but in the theory (cf. IIL.5 - IIL.7).

Co; t atjon : Let & be & category, a € k7,
let Y : F -k beadiagran;in 4k , xe Hy(a,

(FIYY), BeHy (@, GrY), 4, j—"e }"'. We shall

 say that <o, 4> and (B,4’> are ¢ -chainable if

there exist ,, ,g.,,, € }° and G € He (a, (7,022 )
for £ =4,...,m suchthat 4 = 4, gn=gd's % =%,

P = f ' and for every £ = 1,2,...,m -1 either the-

re exists & S € H} Ger 3244 ) such that’ 7 °

«(6)Y = ¥p,.4 , Or there exists a 6e H"j’l#d »#2 )

such that frth c(O)Y = - Let F:F >k,

Y J —> A& be disgrams in 4 , denote by l}q

the set of all systems " = {V; ; 2 € J7f such that:

. a) Yy » & for all 1 € J7.

neV; =bh=(x, 4>, vhere 4 € 17, x €

€ H, (Ci)F,(3)¢)) .
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b) ax,f0€ Vi, Be k™, j'e J7=» ({f3,75 ¢ Ve <o, 43
and (3,7’ > are Y -chainable).

e) i, i'€ D%, 6e Hy(i,i"), <o, 3 7€ Vi, (3706 Vo b g g
and {(O)F .’ 4> are Gf-chainable,

II1.4. Lemma: Let #: T —f, YL — f be dia-
grams in £ , let »»={V; 1 €7 § € %?. Let a € 4&°,
i,1'€J7, meHy(a,d)F), w'eH (@, ii')F),
{x,4>€ V3, «’ij’)eyf" ‘ ) _
(e, > amd (f, 17> ave _ & -chainable, then
(e.x, 7> and (e’ . %, 7D are €/-chainable. ‘
Proof: If (e, 4 > and (', /> are & -chainable,
then there exist %,,..., 1, € J7 and gz € Hg (@,

(ig ) F) with the properties from III.3. The Y/ -chain-

ability of ¢ Lo, # > and ((a,'. a’, 2> 1s proved

easily by induction according to 72 .

III.5. Theorem: Let & be a category, V a class of
diggram sghem.

Then there exists a category K with the following broper-

ties: )

1) A is isomorphic with a full subcategory of K , the
embedding=functor L : 4o — K is 19(:2 -preserving.
If Y. is a V -diagram in -k , then % ( has a di-
rect limit in K , )

2) 1 K’ is & _V—’-complete category and $: ko — K’ a
functor, then there exists a functor $’: K— K’ , uni-
que up to natural equivalence, such that ¢ = ¢. -
and &’ preserves direct limits of all YL ¢ , where
‘@ is a \ -diagram in .k .
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Proof: I. The notation of III.3 will be used. Denote by .k,
@ category such that AR," 1is a one-point set; put V - _
=Vud{Ah,} . Let .k be a category, denote by [P the
class of all V -diagrams in & . Let K be the catego-
_TY defined as follows: Ko%= P; Hy (F,) -I;:; for
every ¥, Yf € P ; the composition of morphisms in K
is defined as follows: if %, ¢, £ e P, v = {V;;
1e€J”} e Pg.q" , w={W;; €)1} e que ’
then 1. w = {U;5i€I3e £  guch that (ex -8,
£>€ Uy ,where x,7>€V; , B, L)€ W, . That this
" definition of the composition is correct follows from lem—
ma III.4,

II. Evidently, 4 may be embedded into K as a full sub-
category; denote by L the embedding-functor (i.e. (@) ¢
is the diagram % : Kk, — &k such that < e k] =>
=» (L) F=a) -

III, Let now G : J —> 4k be a diagram, L & V . We
shall prove that ‘qr-lm_;,’( Yl .1 4 eJ7 |, put
bj’(é) ‘% ; denote by £; the identity "4,,'_ €
ngb(,o’-’/a}A).Take 15',-{%}5 f(f:;‘_ such that
(ej,4e€ Vj; . Evidently, if 3, g‘.’e}f’, 6 e

€ H (j,j-'),ther; (e,- , 7 ) end {(E)gy. 24 A
‘are ¢} —chainable, consequently 2 = (6)GL . ¥z -
Thus (L s{vz5 7 € F73) 1is a direct bound of Y ¢
tn K .1t (H 405 j € 173> 1is adirect bound
of YY¢ in K, b ={H;}e 6:;’1, , then there ex-

Fl
ists a canonical morphism . e E.;‘ namely J1 =

?



IV. Now it is easy to see that the embedding functor preser-
ves inverse limits of all diagrams in 4 ; this follows from
the part III of the present proof and from lemma I.7.

V. Now let K' be a category in which every V -diagram
has a direct limit, let & : & — K’ be a functor. We are
to construct ®’ . Choose some lum—x:'f} é for every
Y € K (auch that I‘&-:;’::l FPl=(c) P whenever
ce/&."' (e)e = &), and put (‘f})@’a’ K’ %ol
Let F, Y €K7, F: Dk, Y:F >k, v-{v,»eJ’;eHKﬁ’%"
Set <asfgy; i € 7> = Bmg §&, <i{yys3€}78>= Ty, PO -
Choose <<t; , 4 >€ ¥, for every 71 € J7 .
Then {&; {Cac;)® - ¥ i € J°} Y is the direct bound
in K’ of &£ o Denote by 2’ its canonical morphism
end put (v)9 = 2’ (ir we choose another <&y F4 7,
then, since <x; ; 7, > and <« , #; > are ¢/ -chainab~
le, there is (%) .%; = @) P - %, ). Now it is ea-
oY to see that if F, ¢, ¥ e K”, veh¥, we f
then ()P’ . (W)’ = (v . w) P’ and
(tg, 1P’ = € e ; consequently $‘ is a functor. Jb-
viously ¢ §'= o .
Vi. Now we should prove that §’ preserves direct limits
of all Y. ) wh where Y is a V -diagram in & . Set
‘&;L I — k&, &m Yo = <Y; {w;';‘;re}"n, o Ped=
Lmy, U@ = <bs{y 4274
Then (Y)J’'= 4 follows immediately from the definition
of §’ . Set ()Y = % € KT ; _then 19={\9'}§ {%ﬁ'
Since 1;9_ is the f:anonicgl morphism of the direct bound
{4, {%}} of ?;@ in K’, there 13(15)(5’:;;'4;-.

- 33 -



VII. It remains to prove the unicity.of ¢$’‘. Let Q” be
another functor &” : K — K’ . which also preserves direct
limits of all Y ¢ with ¥ € K%  and such that

L« §“= @ . We shall prove that $° and @“ are natu-
rally equivalent. Let S ©be a skeleton of the category K,
Lot ¢ : K — S be the naturasl functor of K’ onto S.
It is sufficient to prove &‘c = $“c . ELvidently
(€)P’=(x)F” whenever o« = (B)t , e RTu R
consequently ¢ ¢ & =7 ¢ §” for every diagram ¢
in & .Let £, ¢4 € K7 . Since (F;{y ;i€ I7})=
= Em—:?'b; CYilyr F6273)= 14‘0—;,:‘&0 , Decessa~
rily (F)1d%c = (F1d%c, (Gg)rd’c = (¢,)$”e

and analogously for Y and 97 . Let » ={l ;% e J%je
& !}"% be given. Choose (o, € V; , @, € Hy ((1) F,(F)Y) -
Then m = <Y {L@)e]-%,; 1€J}) is the direct.
bound of L in K and v ia its canonical morphism.
Since (Y)P’c = (GY)P“c, (L)l -3z )% =

= (@) )d’e » (7, )8c = ((E;)e)P7c - (9 )¢% =

= (L(@)td .« 95, ) d”c , necessarily (v)d'c =(v)d"c .

III.6. Note apd definition: For some classes V of
diagram schema it may happen that the category K construc-
" ted in III.5 is V -complete and ¢’ (cf.III.5.2)) preser-
ves direct limits of all V =-diagrams in K . Such classes

V will be called ¢l osed . It is easy to see that
tﬁe class of all small discretAe categories and the class of
all finite discrete categories are clos d. (If V' is the
class of all saall discrete categories, then the construc-
tion given here and that given in [3] are the same.)
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Now it will be proved that the class of all quasi-ordered sets
is closed. By & modification of the proof it may be shown that
the class of all small categories is closed (cff QJ.OJ_).

III.7. Theorem: The class of all quasi-ordered sets is
closed.
M: The notation of the proof of theorem III:S is preser-
ved. Of course, P 1is now the class of all presheaves in
k.
I.Let H : (I,4)—> K be apresheaf in K ; we shall
prove that it hes a direct limit in K < Then (Z)H 1s
a presheaf in A& , demote 1t by ‘¥ : ('¥,% > > A
and set Hf = {Sf,’t ; L e L7 . We may auppoa: that all
the sets ‘::&,{,Z}XSJ’:A (ie[,,l«e’:.{ )
are disjoint. Por every 4 € I let I, be the set of
all :ti’e I, 1',:# 1,{i,1" 6‘ A4 . Put A.;,g =i"€ji {47 »
= SZ;L , where £§I s L e ; put A; = U Al g+

lese
Now we shall construct a presheaf * : ( £,p > — &
such that * = |Zw, H | CPut £ =Y tL)u
vGY ALY, (£ = (L) for L e *L ,

(KL, o, 4>)3 = (L)% for (L,&,4>€ A; ¢ -
Now define relations 6 , 26 on X as follows:

X6y > x =<L,;c,jd€ A, 4 andelther y = £
(then put 6 ¥ = iz ) OF Y€ Y2 , i’ € I ,
® € Hy ((£)*%, (y)*3 ) (then put Y = x )
X% ye>x,ye forgme iecl. and

X %o 4  (thenput ‘6% = “'5'6’“7’ )e

Put P = "6 o 26 , 1.ec {X,% > €@ if and only
if there exists a x  such that {x,z >€ '6, (x,%4 de %6.
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Put @ = @ vi v A , where A 1s the diagonal of

L > S . It is easy to see that . is reflexive and tran-
sitive. Put ¥ = ¢ ., for <X, yud>e A, H¥ =~
=Y for (x,yve?6 , %¥- Tg* .%Y¥  for
<x,z%e %0, <z,yde %6 . Evidently K : {L,p > &
as defined above is a presheaf in .k .

II. Now we shall define A5 : “¥ — I such that < ¥ ;
{275 © € 14> will be the direct limit of H in K .,
Put Wy ={V,,; Le’lL} where V , 1s the set of
all {«x, 4> ¥ -chainable with 2y ige 1 £7 (of
course €y )iye € Mg (L), CL)%) ).

a) First prove that w; = H} . ar. for every <i,i">e
€ A ; it is sufficient to prove this for i + i’ only.
Let £ €%, <pB, £ eS}, be given, let /B €

€ Hy ((£)°%, (&)%) ; 1t 1s sufficient to find

(& Zre VWV, 4 , K Z') e V;, g- swh that K E)<B-T;

£’> are ¥ - chainable . KL,B,2%
Put “EZ Y= ey £ L0 P N (£)%
'<d~/, 2z’ > = - // ) :
st i, 20 @)% r ‘ (LeX)
T vee? ‘ (£ed) //'e(l)iae
We shall show thet / €. i
, / (enée
$pyizgg 147 amd ‘e | /
KR, L") are / p .
¥ -chainable.. ) VH (LeL) L% e

Take b= Ly Ly w L3, 85, Ly=l', 3= €uhe » 1= Caher %=+
Then 4, p £, ,7; ’&'6;; =y and 4 pls,g;-?fj:’.—./s’.
b Let now H'= (H'; {a; 1 ¢ Ij» beadirect

~ voundof H in K, let wf ={V/ ,;Le .1t ts
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easy to see that tr;ere exists exactly one canonical morph-
ism of H’ in K , namely V-{\/{:(x,,r_;;.xe";tquie I;,
where o7, : “f v A; — % 1is a mapping such that (£)dm; =
=4 for £e %L, (KL B,L>)m =L for <L, B,L" %
e A; . ‘

III. Now we shall prove that §’ preserves direct limits
of all presheaves in K , Let H: (I;4)—> K be a
presheaf in K . The notation from parts I and II of the
present proof will be used. Set < *a; {"’%; Lel}yys=
= Ty, ‘%P, <a;{v%;xeXi¥= Bm,, ¥ -
Ir 5‘{1 € Saf’t , ﬁf’l € Ho (CL)*H, (L)% ) , then ‘g, -
. ( Hf')@' = (,o:; )P . ‘:'yz, ; this follows direetly from
the definition of &’ . <((H)P’; {(v;)$"; 7 € J})
is direct bound of H §’ in K’ , since (H;{V;
i € J3% ie the direct bound of H in K; % .

A

. (V;)P’= v;  vhenever x = £ € % . Let now < &
{y;; 1 €I} ) be adirect bound of HI$’ in K’ ,
v, € Hy, (‘a, &) . /
Set ‘iac,, =% . ¥ . Then s {%, ; Le L3>
is the direct bound of "#¢@ in K’ , and if <z, ¢ )€
¥ .7 ./ . ./ -
€A, 0,65, ,0,eH (K, 2)*H), then x, =
Ty :/ _ 1z . =
= ﬁ’,l ).é » Yo, . Put o = %o, whenever either X
=led or xell,x,£>€ A, . Then<{4b;{x, ;
X € £3) 1is a direct bound in K’ of H P 3 deno-
te by f 1its canonical morphism in K’ , i.e. 2 . f = o .
Then 1“(_(2 s (0)P . f = "9‘\. v whenever < ¢ I,
L e L , and thus (%)@'~F_= Y; for all < € I.
The unicity of such a morphism peed be proved. Let also
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(%"P’-F,' Y; for some f/ and all i € I . Then
« forall x € Led; if xX’={L, 4,4 e
eA;, x=le* , then oy = o, , (X)H = (x)F ,
KX, xdep, Hi = Cygr % =(HIP. v = vy

and cons~quently v, . £~ = o, - Since £’ is also

'the canonical morphism of the direct bound < &;{ax, ; xe£F)

of #¢ in K’ , necessarily f' = f

APPENDIX,
The proof of lemmas I.2 will be given now., The proof of
.lemma I.2 A is given explicitly; the modifications necessa-
ry for the proof of lemms I.2 B are indicated at the appro-
priate places in parentheses C O -
Let there be giver; a category £ , let @, & € £7. For
every pe H, (a, c) with c &+ a , let there be gi-
ven a morphism @ € H, (4, ¢ )  such that statements
a) b) from the lemma are satisfied. _
A) Suppose that €, = « .3 , where d + a, < € Hy(a,d),
peH,(d,a)
Put e = . /3 . Then evidently cQ =uf for eve-
ry peHyéa,e), c+a. 1t §:L£—>K 1s a func-
tor and there exists & .’ € H ((£)9, (@)® ) such that
@ @) =Cup)d whenever p € H,(a,d) , 4 * 4,
' then necessarily (w )¢ = (u,’ . Consequently we may put
=L, ¥=0 . -
Copventiop: Let m be arbitrary positive integer, let M
be a non-empty set. An m =~tuple {(m, ,..., m, ) Of elec

ments of M 1is an element m, € M tor m =1,
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and for m = 2 it is a mapping of the set { 7,..., m }
into the set M  such that the image of each i €{%.. ,m}
is m, € M ; then m; is called % -th member of the
m - tuple. Now let m be an element, let M be a
set, let m be a positive integer. Denote by Mm the
set of all M - tuplee of elements from the set Mu {m },
at least one member of which i8 m .+ The fact that M n

n (ﬂt‘z Mp) = # will be denoted by m ¢ ¢ M . The *
fact that for every set M there exists an »m such

that m ¢ ¢ M will often be used.

B) Suppose that A) does not hold apd a # & .

We shall describe a category A with the required proper-
ties. Take some w ¢ ¢ L™ . Put A= L7, Hyle,d)=
=Hplc,d) for every c,de A", d + a. Lt =
be the set of all 6 e H,(a, a) such that 6 = v . /3>
where « € Hy(a,c), feH,(c,a) for some ¢ * a -
Set Z'=Hy(a,2a)-Z . Put Hy(d,a)=H,(d,a)u H
for every d € £7, where H=H,(d, &)x{a@f = =’.
C Moreover it is necessary to identify <ay 4 , &, 6 )
with @, , where & denotes the null morphisms.>

It is sufficient to define the composition only when some
factor is an element of H (for other cases the composi-
tion law is given by the requirement that .£ 48 to be .a sub~
category of A ). Let % be a morphism of £ into‘.& ,
let 6 H,(a,a) .set (v, @,6><v, &,6) i
CeZ , am<y,&,6)*=V. ,x.5 if 6€ZX,
6=a.8,x¢H,(a,a). Pt p.<»,@,6>=
=(p.v,®,6 tor P € L™ ;

<v,(£2,5>.r=(v,(<2,6.'r>"; for T € H, (a,a);
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v, @,6)T=Ve, (6.7) tar T e Ho(a,e), ¢+ a ;
(v,Z,0). V@, 6V=(v. (6.V), 0,6’ for
v'e Hyla, &),
The assoclative law for this composition will now be proved.
8) Evidently p.(o". (v, i, o)) = (p.@’) . (v, @, 6> for
Py SDI € L™ ;
b) (P, Z,6%.%)2alv,&,6)>.(v.2’) for T €
eHy(a,a), Te L™ ;
) ({¥, (&%, 6. %) T'wp. o (0.2).0 "= . (6.7.2)= {¥,&@,6. (cx")
for TeH,(a,c), t'e Hy(e,d), c+a + o ;
Q) (V@) 63T m Y (6.7) . 2= (2, @, (6.2). 5= <,
_ @G @) tor T e Hy(a,e) 2’e Hy(c,a);
e (V& 6)t)=(p.v,a,6)). ~ for P, €
e L™ ;
2) ((PVy &, 6). (¥, &, 67)).7 = (V.o (6.2, & 677> =
~(»,@,6)-((v,@ 6)-%)tor = e Hy(a,a);
g) (v, [&,6). W (@,67). 7= V(6.2 u(6.7)=». 6.
w0 (N @, 6. (', (&,6-F) Tor TeHyla,c)cpa
h) p. (V@05 . (VHZ,67))= (-3 (6.27),@,6° =
(P <P, 60 P, @, 67 ftor P& £
1) (0, @10). (0. V0L, 679) = (D (6.p.2"), Z,6 =
2 (Y&, 6).p) <V, @,6°) for pe L™
3 (V105 (P, 6)). (0 E, 67 (V. (6.25), &,
67 P @, 67 )= (V. o (0. V) e (602*), (@, 6% (. o (6.
3w (67, 01, @2, 67 = <V, [(Z,0 - <3y (607,
@, 073 (0, @0 (K% dT,6/) . <", fZ,64>).

“Set @ =Ce,, £, %, ) . Then evidently <», &, &)=
;v.{fr‘"s ad .0 = 0 for every
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©E€ Hy(a,e), ¢ + a .

Now let @ : £ > K be a functor with the properties from

the lemma. To Show that § can be extended to the whole f

it suffices to prove the following implication:

50.(14,.6’=p’.(u,. 6'=> (p){L(u’.(a)én (p’)§ (6P -

The implication is trivial C if p. .64 @ and D

if 6,6'€ X’ ; then necessarily @ = ', 6= 67 . If

6 e > and @.(u,.6'-= p'.y-&’{*a}then 6'e .

Let 6=cx.f, 6/=c'.3' ¢ H, (a,a), x’¢ Hy (2, a).

Then P. % . =0 - .6 =p".we.6=p"  a"/2" and thus

@) P .’ (6) = @) " (6°)F . The proof is ana~

logous if 6, 6’e H,(a,¢c) , ¢ * a . The unicity

of the extension of $ such that <’ is the image of (¢

is evident.(H p.w.6=w then also @) '+ (6P = PP . - (0).D

C) Suppose that 4) does not hold amd a = & :

First the following sublemma will be proved:

Sublemmg: Let G be a semigroup with the unit € ¢ and

with the zero 0D . Let Hec G, let <€ ¢ H ,@let‘,'_o-é'-

.p’eH forevery p, @’e G, 6 e H . For every

6 € H 1let there be given some .6 € H with, 6.0 =

=, (6 .©) . Then there exists a semigroup P such that:

1) G is a subsemigroup of P , ¢ is the unit of P
0 4is the zero of P, and there exists a € P  sueh

“that w.6=,6 forall 6¢ H ; ‘

2) it § is a homomorphism of G into some semigroup G’
with unit € (Cand zero 0’2 , (€)P = ¢’
CO)d = 00D , and if there exists a ' e G’
such that (u.’. ()P = (69 for every 6 € H ,
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then ihere exists exactly one homomorphism ¥: P — G~

such that (w)¥ =’ and that = (.¥ for the in-

clusion L : G —» P . -
3) Every ®« € P may be writtén ‘ in the form o =

L Edy et Ky, v:here(o;,ﬂeéi, o, € {uiu LG-({ejvH)]

for i1=2,...,mn and if a; + w , then . , = «

for 4 =4,...,m -1 . This expression is unique C for & + 0.
Ppoof of the sublomma: Take some T ¢ & G. Let P be
the set of all m -tuples (m =1,2,...)<a,,...; %, > of ele-
ments of the set G v {©} suchthat o, € & <, i
"o, = 0 then it =02 ,if m 22 then =T,
x; ¢ Hu{e} for 1€{2,3,..., m 7, and either

«. ¢ G or o, ¢ G for £€{2,3,...,m$ . Evi~
dently (cf. the convention) G < P and e, ,..-; 0Ly 2=
=(ﬂ,1,..., /jm) if and only if m =m end a; = /3;
for i=4,...,m .Set G= G-({ej u H), and 6=
= o (zm..6) for every 6 € H and positive integer m .
Evidently, 5.0 = _,, (6.©) . Now ve shall define the com-
position in P . Let Cayyeery %, >, <B,ye0; B, de P Put
(tgyeeey %y > e fByyerey B, 0= 0 vhenever c,,---; Fpd=
=0 or {f4;,+> /3, =0 ;i in the remaining cases let D
(e Ly Byseees R Y for m =13
mKyyer sy Basios B P fOT S = €5 _
=AU r Ay Byyey fom ¥ TOF K = T, B e G

= Ggyreey Gom  fay ) gy B YEE M 22,00, € G %, BT
'<°°11"’°°n-11/317"'7ﬂm> for m 2 'Z,dfne GT; Ap- fBy= 2
=6, B, BN x,€CG, Xp-B,eH, m =2
€, By s Bp)fr p =T, By € HY

.
>

5

Vs

2
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here & and @ are the element\a of G defined as follows:

Let 4, <4, S..c <14 4 vLei{t,..,my, l=1,..,4) and let
o; + T for 2 €4{4,...,m-1} if and only if < = %,
for some £ e€{1,..., AF (evidently ¢, = 7 ). Then
0= 0£1,1 v i,-1-1, {051,;_ Cespdy -1-4, Eab_';‘ ) i 1-ia, (
(% * wm-gmiy (% - By N}y @ =l iy 14, {mz .
Y A A L R L EE A (x"b on-ig P10 F .
Now we shall prove that the composition is associative: .
Let <oty,..,0, >, <B,,.0 By 2, <F,---;% € P. The equality (x):
(CCTRPL SORE IRV OIS ATXPY APLRC MUY, A S MV, I e )
(Cholds trivially if (&, ,..,%,> =0 or<f,,.-,,0=0 or

(%> %>=0 ; in the remaining cases it 1s obvious
ifrm.;Z and neither (/SMGG and 3 -7 € H)

nor (f3,, = © and ¥ € H).

Indeedy {atqye-; 9, Y+ Byye s Bnd=C ey Bayevy B 2, <A,,...

ey fBon ) Uyres B D= By goe> g stY y80A therefore ({ax,,..,or 5. (B yne
oy B D) ¥re s Wy D= "'7/317/331 l/gm-,,l ) =gy ey Ay Do «/2,, ves

oy B 2<%y %> ) ywhere ..  and Xt are to be repla-

ced by the appropriate expressions. Now we will tr e a t
the following cases.
a) m = 1 : .
1) if /3, = € then (k) is trivial,
2) Let B,eG-{e}, B, % & H ; then evidently .
B, € G and the following cases may occur: ‘ '
I. ¢, = 7, Then ((d,,,..,o(.”)-ﬂf)o(a‘;,, ade > =
=Gy % s By Wy Varer Yo ¥ for B 4 €
L CCOP .,a: Yo Bk dr s B Ym gy Ky 3 Wpr e W
for B, % =2 3 then (% ) evidently holds.
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Il. ¢, € G and o -B,-9% ¢H ; then evident-
ly o, -3 ¢ H and it is easy to see that (X))
holds.
111, ¢, € G and o, A -% € H ; then nece-
ssarily o, A, + € .
Let 1,< 1, <.. <11’k’ 1’2_6 {1,..,m 3 for L e{1,..,k},
and let of; % 2 if and only if o; = OC.,;I for some
£Le€{1,..,&%. The following cases may occur:
<) o B € H . Then (<ct,,..,06, YB,) ¥y -y 2 >=
n(a(,”,,’«,”./31).(7;,..,'3&);-((u,rﬁ,,.,')‘é)’(acﬂ..,ocm)'
By B B D)=ty 1% > By gy s B D =G0 s U
where (L = Ob; *pd-1-4 (“‘1:2' coepTpmTmig g (i ¢
Cgmed-dg (X o By Nl ) .
B) o, - e€H. Then A <%, »%d=<Byr %%’
.and (KAhyye 9K D2 fB3) % = {00.,;1 ‘14, Eoc,;a-,..-,,_.ﬂ.,-i(
(K By) e T} e Bym oty "h-1-4, Loty cuve spm-1-dp (O i %))e0e ]
Now it is easy to see that (k) holds in this case.
3) The case [3, € G-{t}, 3,°% € H 1s a special ca-
se of b) and 4). ‘
b) ﬁmeG‘{‘}7 ﬁm'%eH snd_neuhsz(ocﬂee
ad «, -4 € H)por («, =72 and f3,€H)

holds:
et ¢, <4, <..<%, 3, e {1,..,m} fo;-te‘{/f,'-:kf
and let of; & T = X = Ay, for some £ . Let

§1<d1<.e<gy, 4s €{1,..,m} tor ted{1,..,4%

and let B  + v &> f3; = f;,  for some t .

Then By, 0y B Y <1 1% ? = C@s¥asr s Y2V where

“ -/qu.,?,;.,_?; [/33.‘.“,.1,"-’_,_2‘».’{/33;.7”_4.};’ Pom * % 13- J.
- 64 =
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1) Let % = T . Then (a . .5 0y -, % ,-., % ) =X,
Yoo Az ) g WheTe V=K codgd Eoc__-:L Seertpip-t-g
(o;“,% Cpmei, (W )...J .

But (clys- > %3 (fB5: 55 Bm > 18 either («x,,. ) %m s
Brrer Bem Y o <Ky 3%, B35+ 5 3y, ) (and then f3, =
= € ); on aubstitu‘..inﬁ the expression for <« into that
for ¥ one sees easily that (%) holds.

2) Let #, € G . Then (ayy:-y %y >+ <, %2, -7 %2> = (20
.1 ¥ 7 , Where ¥ = R T E“"—}. e tpipmandy {
{Kiy » wm-a-dy (a, - w)f.oe 1.

But (aqy- -2 %m)e<f,. 5 3, ) 18 either {dq)..y X, _, )
d,w-ﬁ,;/?;;--yﬂm)or Ay s%m_g3/5 -5 B ) (and then of, -
,1313 €); on substituting the expression for .. in the
expression for 3° one sees easily that (X ) holds.

e) P = , Y €H and neither («,, € G and
«, - pH€H) DR (ot = % and 3, € H) holds.
This case is analogous to b), with another expression
for . . There i8 (w = Bg, - wd-1-F LRz ven e
*wdym1=dnea (Biy* wm-ds W )... 1 .

a) Let [((B,. €GC-{e} gm‘ﬁm~7‘:,eH)gg(/£w:t
and % € H)]  and[(«, € G amd «, -B, € H)
o (ky, = and A, € H)I -

We shall prove (%) by induction. First prove (%) far

m g 2 ,m£2, 2 42 , Let x, 8,7 E G  be
such that for all the cases 1) - 8) which follow the re-
quirement d) is satisfied. Then '

1) €« (Bpeoy)=(x-pB)-7 ;

2) (b, ¥D ) y= (R pB)P=kon(Beq)=(X,T)(R-7);
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3) (KB I)y= (B = ®efBey -, 25 9);
4) (), e )X By TI= X (BKPyT))5
5) (<¢97)‘<ﬂ,7>)'7‘ <“”gﬂ,r >‘3"-¢L "b‘ﬁ 7:3“ =

=k (Beyy)= e, 2> (B, 2y 9);

6) (X, ) 3) - (T Y= (X )oKy 2 )=
=Ky (Bey)ydy=x, 2 (BKy,®));
T) (o B, 2 ) (¥ )= (X B ¥, Edm & -({f3,2)<2> D) ;
8) (K, ¥ Y B, x¥) (T EY=x Qe )=
S (o) Y =@ I By (o, ).

Now let oC = C0Cqye oy Xp ? aﬂ’</317"7ﬂm>7 P=LFprr PV

We have proved that (x) holds for m &€ 2, m &2,z £ 2

in all the possible cases.

I. Let A 2 2 be an integer, and let (=) hold for all
cases a) - d) whenever n & 2, m % 2, X & -R. We shall pro-
ve that (k) holds for all cases a) - d) for m.& 2, m $ 2,
2z & k& +1 . It is sufficient to prove this for d) and 2=
=4 +1 only.

It is easy to see that either (95, %5, <) Th+1> = C¥7>
B B Bans? (for 45 €5 ) or<tirtir s tlaryd= (%
%)% Vet (for = = ).
Only the second case will be written out explicitly. Then

K (B Wssos Yasadde K LR (KWrr 2D <€y %550
Tae12)] = L B <p, 0 3) <, 055005 %2 3] -
But_having a) %3 - <77, %; ) 1s at most & couple, and there-
fare a;.f(ﬂ LY %2 2) <t %, s Yars 21 =LA (B ()
AR C N AN VDL NN Y. DR G AN S KIRE P PPN
DA But having d) o« - /3 is at most a _
" couple and therefore [ (a-3). (o5, % 51 €€, %, % ="
s (L-f3). <7:,--,'r,h> . =66~



IT. Let /£ = 2 be an integer, and let (x ) hold for all
cases a) - d) whenever m & 2, m & & . Now we shall pro-
ve that (x) holds for all caagé a) =" d) whenever m & 2,
m £ ko +1 . It is sufficient to prove this for mm =
= fo+41 and d) only. It/ is easy to see that either <(f31;--
*Pret?= $BrsBe > Bas -3 Basy? OF (B11+s Bary? =<PBy2 /5 )
«<t,/355- g4 ) Only the second case will be written
out explicitly. Then (ot -<fBy,--)/Bner P2 ) ¥ =L -(<B1,82)"
c$ey By s Paara Y= LBy B2 )€, B35+ Braa O]
v = (e Byy Bed) (K€, By s Paes > a0 )= - LB, /30
s (K, Byy oy Basad ¥ )= X [<Bqg; Bss LB3s- > Pasca®

. T_] .

III, Let & 2 2 be an integer, and let (s<) hold far all.
cases a) - d) whenever m £ A& . We shall prove that (k)

.

holds for all cases a) - d) for m & -k + 1 . It is suffi-
cient to prove this for d) amd m = & + 1 only. It is ea~
8y to see that {(&y,.,., X 4., ) 18 either <V ;--5 Lg ) -
*Apyq OF (Xqg.-;Kp): <€, g ,.,> . Only the second
case will be written out explicitly. Then (< Cqy--) g, 2°
cB) Y m LKy s Agg > <€, g Y) BT oY = [<Xyye ey Ay D0
(et peqgd B Y = (Hyyeon Kg > LS, &gy D)
el = K&y Xppa P (B ) .

The proof of the assocliativity of the compvsition is finished.
Now it is easy to see that G 1s a subsemigroup of P . Set
@ =<€,7 > . Then evidently  « - 6=,6 for every 6¢
€H. If $ 1s & homomorphism of G 1into some semilgroup

G’ with the properties from the sublemma, put (<o, ,. ., >)

Y= z,- ves 2'” for <“‘17"7xﬂ> € P, where "—‘-: =
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=(x;) P for x; G, X; =’ for a; = T -
Then ¥ is a homomorphism of P into G’ , and is an

- extension of ¢ such that (w)¥ = @’ . The unicity
is evident. If <(&x,,..,%,> € P, set &; = oo, for
‘a; € G, X; =« for a; = T . Then evidently
{Qpy 1%y Y= &y et @, and this decomposition has the

‘ properties from statement 3) of the sublemma. This conclu-
des the proof of the sublemma.

Now the proof of the lemma for the case () will be gi-
ven:

Set G=Hy(a,a), H={0eG;6=x-B,x ¢ G}, ¢, = €.
Then evidently Hc G ,€éH, ©-6-p°e H for every
ceH p,p'€e G . It6eH,6-a-8,x ¢ G,
put .6 = X - /3 « The assumptions of the sublemma
are satisfied; let P be & semigroup with the properties
from the sublemma. The form o, - ...- o described in 3)
of the sublemma ‘_will be called the standard decomposition
of «x . :

Now we describe the category A : A7 = £7,H, (c,d)=
=H,(c,d) forall ¢c,de h”, d+ a; put
Hp(a,ea)=P .If c e h”, ¢ + a, then Hy (c,a)
is the set of all m -tuples (v, ax,,.., &, > where
ﬁeHI(c,iz,), 6epP am e-o,:..° x, is the stan-
dard decomposition of 6 < and if V =&} ,, then put
PV, 0gye ) Bom D=V, 3,,--) Bm > for every /3, °--°8,€
e PO . Now we define the composition in & . If v,
3¢ € £™ | then the composition of »» and 2¢ is the same
inkh asin L . If6,6°eH, (a,a), then the composi~

tion in A 18 the same as in P . We define the composi-
: - 68 =



tion for the remaining cases. Let ¢ € A7 - {2}

1)if a «d, v'eH,(d,e), then v’. (v, x,,--
g Ky > = (VY eV 0,0, X, Y

2) 1t v'eH, (a,c), then »'-(»,0,,. ., 0, >=(v% D)
I :

Nir (v, .., x,>H,(c,a),peH,(a,a) and
V(PRI ﬂm 4s the standard decomposition of ¢ e, .
*e. 0y P 5 then (V, @, ;- >0 =3, 5 Pm>-

4) if peHy (a,c), then - P = @ ;

5) if pe Hy (a,c), and a ... “cx,  1is the standard °
decomposition of &€ H, (2,2a) , then 6-.p = <, *
efeeolexp o (x, -p)]... %

6) if (v, x,,. ., &, >e H, (c,a),pet(a,d),d+a
put (v, ., @, D P = v.[(xgeco.o -1 -

Ir (v,ocz,..,orm>eHh(c,a,), cC+a , thenas €-a,-

*...r o is the standard decomposition of 6 =a -. . - o ,there

is (v,ax,,.-5 x, >= V-6 . Now we prove that the

composition in 4 1s associative. Let a, B, € L™ ;
we are to prove ¢

(%) (cef3)eq =ck-(f+2)

whenever all the compositions are defined.

a) (x) is easily verified if o, A & L™ .

b) Let o € H,(e,a),c+a,3,9€ H, (a,a) . Let
By*"Pn- @nd @ -...°p,  be the standard decom-
position of B and f8,-...°f8 - 9 Tespectively. Then
(BB Payeres B Do T = A LBy, B, -
ca Pl X [ (AP @Rl (Bey)
(B Py)efPpreee R



is the standard decomposition of B . 9 ) .
¢) Let x e Hy(c,a),3e¢H, (@aa),yeHa,d), cka « d .
Ir pB,-...* 3,  1s the standard decomposition of /3 , then
(K fB)eqpm Ko By Bygers Bpde ¥ = -fe{p,-[...-
_(/,l.m )1t = a-(R-y).
d) Let ot e Hy (@a,a), let ot »or, *... o, be its standard
" decomposition, let A& Hy(a,e),c+a,yeH (c,d),
de £%. Then (%) is evident if either m ~1 or x= (.
We shall prove it for all cases. Then «: (B -.9) = o, *
-{...-acm,-fw,,l-(/s-y)J...}, (@-f)eyafn Lo -@.p).05-7.
Using induction according to m , (%) 18 proved for m =
=1 and the inductive step is trivial; indeed, or- (/B -g-)=>
= «,1-{...-oc“_1~f(ac“-ﬂ)-'x'l... § and the supposition of
the induction apply to (ec, - /3) -
e) Let «,3 € Hy(a,a), and let a ... cx,, and
By .. * Bm  be the standard decompositions of o and
/3 , respectively. Let @ °...°(, be the standard de-
composition of o - 3 . Let ye Hy(a,c) , c+ a -
It is easy to see that <(P,,---, 0, > 18 either <at,,---
o0y By Brscess Bm D00 KohgyensOpoy s By Base cr Bm ).
or (g5 ) Km.q1Bss°+s By Y (and them o -/, = € )
OF { gyt )%y 1%, 5+ 93y 7 (and then 3, = € ) or
KBy e Bgroeat 0 o By fByyeevs o D -
In all cases except the last, (XK ) is proved easily. Indeed,
setting d=/3, LA e (B« 9)... 1] 1t suffices to
prove (&, /) =a, - (3,-0") . Sincef,eH, (a,2)=G,
the case o«, € G 1s trivial. If o« =« andfB,eG-H,
then ¢ -, ¢ A, 1s the standard decomposition of o -

*/A; and the equality follows immediately from the defi~-
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nition of the composition in A . Let x, = w, /3, ~
=7 .78 , where ¢ Hy(a,4), d +a . Then o, -B,= 7 -8,
(o By )+ T mg Y o (B0 (8- )] = el BT = &, - (3, - )
The last case (l.e. <py,- -1 @ D= <xyoea®c =B )8y 1e27 f3m ? )
will now be proved by induction according to m . If m = 7,
then (X ) holds; consider the inductive step. Let = > 71,
and set O =B, {By- [ec. (B> )]} § evidently

deHy(a,e) . Now o, -3, € H follows from the definition
of the composition in M, (2, @) . Then there exist
neEH,(a,d), dea, deH(d,a) such that «,, - /3, =
=17 -1 . Then, using a), @y-v..* X, /3, = &, *... K, _,*
o+ B)=Llo-...- &, )yl and therefore

(KB g = (@yrennty - [By )= {l0y 000K, Yenl-dhj-d=

=[(ap ., )] (B.0)

using the assocliativity of the composition in £ , and then

from 4),
= (@, V[N ($:0) ] m Ky ) [(7-8)-0"] =

= (A,... ~ap“_1)-[(aruf B In Xy, Yol (By)];
now the supposition on induction may be used.
In a) - e), (x) is thus proved whenever o« ,/3, y-€ £L™ v
u Hy (@a,a) . For other cases (k) is easily proved
using the fact that » € A™ - £™ implies ¥ = 2. O
for some »’€ L™, O’eH,h(aza‘). '
Not it is easy to see that the category .4 has the required
properties. Property 1) follows immediately from the construc~
tion. Let $: £ > K be a functor into a category K with
the properties from the lemma. Then, using the sublemma, there
exists a unique extension of the homomorphism d)/H‘ (a,a) ?



- namely the homomorphism ¥ : H(a,a) > H (@)d, @) ),
such that (wW)¥ = w’ . Nowdefine ¥ : .o — K eo that
Y =)d forall v & L™ ,(6)¥=(@)¥ for € €

e Hy (a,a) , (g))&’; WIP-@y... w,)¥ for p=<V,
Oy yeeey Oy SEH (€,0), 4+ @ . To prove @)¥-(B)Y = (x-BI¥
it is sufficient to consider the following two cases only:
o) ae Hy(c,a),e+a , B e Hy (a, a) : let @ =<2,
a,z’...,xq) and let @ -...- @ be the standard decomposition
of o,...-0 -/3 . Then _
(Y- (PYY = ()G Gy rrn ', VT (BIF = (2)B- @NF .. (R ¥ =
=20 QI BIY = KBy, P 1P DY = (@Y -
B) x eHaa), fehH,(ac), c+xa . It is easy to
see that then (a)W:(B)Y¥ =(x-B)Y  iIf either o €

€ Hy (a,a) or o = w ; amd by induction according
to m this 1s easily verified for o = o&,-.. o, € Hy (2, a)
where o« ‘...'or, is the standard decomposition of ot -
If 4 1is an infinite regular cardinal such that card £ &
& ¢4, then evidently card A™ & ¢ . Moreover, if H
1is uncountable and caxcl Hp (e, d) < o for all ¢c,d €
€ L7, then card H,(c,d)< 4 farall c,d e A7;
this follows from the definition of A .
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