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Commentationes Mathematicae Universitatis Carolinae
6, 4 (1965)

SUM OF CATEGORIES WITH AMALGAMATED SUBCATEGORY
V&ra TRNKOVA, Praha

I. Preliminaries.
The following theorem is well known [4, p.41],[5],[2, p.224]:
If{G 3 «x € A} 1s a set of groups and if H 4is a subgroup

of all G with & N G,

=H for all oax, o' € A,

& % o’ , then there exists a group G such that

(1) all G, are subgroups of G

(2) if G’ is a group and. Y. G = G’ are homomorphe-
isms such that (@ )y, = () Y- whenever o, oc'eA,
o€ H, then there exists exactly one homomorphism ¥':G»
—» G’ such that b ¥ = Yy for every o € A
(where b b Goc -G denotes the inclusion-homomorphism).

The group G is usually called a free product of the groupe

G;‘,’

Analogous quest;lons fgr semigroups are considered in [1]. In

with the amalgamated subgroup H .

the present note there is solved an analoguous question concer-
ning couples of small categories. However, if zk1, /zz are
small categories, £ 1s subcategory of both and K, Nk, = 4,
then a category /& for which the statements (1),(2) hold (wri-
ting "category", "subcategory®, "functor" instead of "group",
"gubgroup", "homomorphism", respectively) need not exist. But
if the statement (1) is replaced by the weaker statement (1°)
(cf. the definition below), then there always exists a catego-
ry & satisfying (1°),(2). We obtain the stronger result, if
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we suppose that £ is a full subcategory of 4, (cf. the Theo-

rem), and if £ is a full subcategory of both A, »#&, ,then

& satisfies (1),(2) and 4, , £, are full subcategories

of & . The results may be easily extended to a set{k ;xc A}
of small categories or, in some theory of sets in which every
class may be so well-ordered that all initial segments are
sete; to arbitrary two categories &,, ’ ’k'z (2L s however,
must nacessarily be small).
‘Gopventions: a) If a,,..., @, ) and €,,..., 4,2 are, res-
pectively, n-tuples or m=tuples of elements, and if
(0,,,1..., @, = <.&‘,1.,.,,0ﬁ 7, then m =m and a;= l;
for 4 = 1yevey m o
b) If & is a category, denote by 4° the class of its ob-
Jects, A™ the class of its morphisms. If a, &€ &%, denote
by Hg (a,t) the set of all morphisms of & from a to
4r . A subcategory 4v of Uk is called full if Hy (a, &)=
=H, (a, &) whenever a, b-e £ .
e} If & € H(a,8) , B € Hy (4, c) , then their composi-
tion is denoted by o . /3 . The composition of mappings
or fux_:ctors'is also written from right to left. The image of

an element (# under a mapping  1s denoted by () -

) If « € Hy (a, &) , then ¢ is always a triple, with

first member & and third member £~ . Thus if for example

o, € Hy, (a,,4;), - H,kz (a, ,4; ) and either a, + a,

or Ay #Ab; , then o 4 a, ; if a €hy - k] , then
”

Ao, nl(rﬁJh:H,‘,(a,Ir))syﬁ ; if &k k= ¢ , the
k;"'n/k;"'s @ -

‘The relation o« € £ u 4™ ; will be equivalentiy
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expressed by o € A .

e) If AcB, v:B— M, y:A—N are mappings, then
¥/o =¥ 1s to mean that (X)y =(X) for all

X €A . If A is a monotone system of sets, ¢ : A — B,

is a mapping such that 5’34/,41 = ¥, Whenever Ae A,

A6 A, Ac A , denote by y:A:A ¢, the mapping of

UA into Ag‘ B, such that YA = Ya °

£) If R is an equivalence on a set A, B c A is such
that X € B, xRy imply 4 € B , then the mea-
ning of B/R is evident.

IT., Definition and Theorem.

Definition. Let 4e,, k, bec small categories, 4 a sub-
category of both. Let ( £, 9, % Y be a triple such
that

(17) & is a suall category, ¢ : ke, = A, % :’kz"’ ¥’y

are functors such that ((w)y’ = ((u,) 95 whenever

we £ H §’1’/ - % are one-to-one
LT e

mappings;

(2) if H 1is a catecory, Y, ¢ k1—-) H, %*12 - H are

funotors such that (e )y, = () y, whenever
@ € £ , then there exists exactly one functor y :/AR-
—-)Hwithsq’.yr.,%,%v_%,

Then (Je,, ¢, % ? 1is called the sum of the categories

> -and 4, with the amalgemated subcategory < -

Remark. It is casy to see that, for L% = ¢ , there al-

ways exists such a <»k, S s S 7. In this case write
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k - .‘hq v ""z ’ .

Theorem. Let &, , &, be small categories, £ a subca-
tegory of both. Then the sum { & , ¢ , % ) of the cate-
gories &4, md A, with the amalgamated subcategory £ e-
xists. Moreover, if £ is a full subcategory of 4, , then
% 148 a full iso-functor ana (&*)y N (k)% =

= (L™, (R])g N (k) = (L), -

III. Proef of the Theorem and Examples.
Lempa 1. Let &, , *’:. be small categories, ./ a full
subcategory of both, ,&,: N ,I(,; = 47, and let _
the sets A: - ,l’, ,k; - 47 contain exactly one ele-
ment. Then the sum ¢ &, (,, L, ) of 4, and A, with
the amalgamated subcategory /£ exists. _ and s are
identical and ,k1 and ’k’z are full subcategories of A& .
Proof. Set A7 - £~ {a, } for ia1,2,a,+a . Ve
shall construct the category & . Put k%= &5 u kj ,
‘,k., and zhz are to be full subcategories of & . Now we
must define the sets Hg (a,,2,), Hg(a,,a, ) and the
composition in 4 . Denote by % the composition in A,
(m=4,2). Let {i,5¢ = {1,2} . pPu§=U,
{Hy, (ay, lr)x'Hl.:. (4,2;)} . Denote by R, the following
relationon 5; : («,8)> Ry <y, o) if and only if
- there exists a P € L™ such that o fp =y, B=
=@ £ 0. Let Rf be the smallest equivalence on S;
which contains R; ; put S} = S"/R’}F LI, B €S,
_denote by (o, B Y* the element of S which contains
(%, 8 >, Put Hy (ag, a,j)a{“-;} xsfx‘f@jf .
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For <a"1/‘1’)€5€ set <‘?;—/3‘>"(a'£1,(‘;/5>’;4j> . HNow

we

1)

2)

3)

4)

5)

K)

define the composition « in Kk :Let {i,47={1,2%.

It w,v €k (m=1,2), then -  is defi-
ned if and only if « baY) is defined; obvioud y

MmooV = o -

For w € Hy, (b;a; ), ﬂeHJ, @c), peH*(ag,a. )P.(a et
set @-p=(u’ o\:);/.’;, @ V:or."(/! v).

For 7, € Hy (ay,a,), m=1,2, 066 H,@,a,), 6=<X,B>,
set ¥ -6=<7 Fa,>, 6.y =Cx,Bd ;> .
Far 6 € Hy (@, , @,), 6, € Hp@y,2,), G, <<cx, , 3,7, m=1, 2,
setb:.%-: i.(ﬁiq“a .ﬂj.

For o € Hy, (a;,, &), e He; (&, a;), b £7 , aet

& o p=(Kx, B .

Now prove that the definition of the composition ¢ does not

depend on the choice of the element from (et, 3 >* . It is
sufficient to prove the following proposition: Let (o, , 43 Y€

a)
b)
c)

d)

1 $Un1 % Y€ Sni o, B, >R, <3, ,% >17;»€H&ﬁ(am“' Jnat2Let

{z,g}={4 2},‘«.eH;, (&a;), veH‘,(a,,,c)lrce,t"' Then

(wia)ip = cuin)dd ;

o .(ﬂi.v)=7;..(d;€'v);
<'ri"i:/34"t;'>Ri<T ¥ 177'>3

oc{f'(/lif‘x,")."/,;jaz"-f( ."f,.'. .

Thus let o fp*.= B, Bi=R .d;, P € "m

(in the proof of a),b) the indices ¢ for «, B, 3, d, P
are left out): L,

) (uia)ip=(wic (i d)al@iaripl?d=

slui@ipndoewir)id;
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Woaipiv)=ai@idvieailpi@?v)l=g:@?);

¢) is evident;
.

wtipda; ) ip e il id ) a1iGid) =

![P‘.t(d;{ocj)J.’(p,-.d')-y. o §a;) gy ra§=
=a;i’[(d".?lxa.)?’pj].’ag-a3;.(@7.7;).’0;»
B) Next, prove the associativity of the composition o :

o) First verify associativity for elements of ak':" v /k;”:

VI w,v,6e k, (m=12) then evidently
(v ov). 6= . (v.6)

2) Let {i,73=11,2}, x € Hy, @;,8), 3¢ Ha; sy ), b el
Let @ e Hy, (c,a;), ve H&’. (a;, d) .
Then
& (x.p)=(pu-a)-f3,&.3) . P=k.(3.») follows immediately
from the definition of the composition e .

3) Let & € Hy, (ay,8), peHl(lrc) (SeH,‘ (c,a;), &, ce L”.
Then (x.p).f = (&’ p /3) x.@. ﬂ)-(a,p’/!.) But
(e 2 50,/3’> R; <4,p B>

B) Now prove associativity in the remaining cases:
Let {i,7f={1,2¢, let w e Hy @;,a;) . Then there
exist o e ™, pBe hy such that wa=oa ./ -
1) Let ¥ e Hgy. (4,q), 6 ; € Hy, Ce;, ), ¥ j € Hay Caj, ;)
e H*’.(Zy,cj), Ly,0 e k], & b, €j € &a . Then
Ge( o= ol (a.p)l=6-L(.x).8] =
=[6; . (% .x)) .= (6. % ). w ;
(). 6 =Llax.f). .06 =Lec.CB-35)]-
-a.ECﬁ.v,).oyJ-x.E/&.(-%.b})Jz(u.(va .6,-).
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2) Let v; € Hy, (&, 2;), 6 & Hy; @y, 8;), v je Hy; (ay,.85),
65e Hy (o, 4, 4, bjel .. Then
(a;.%).ﬂ=6‘_.-(1;.'ac)-ﬂ o [(ea)eB]=6; « (W - (1) ;
M.(,)a..q;,)_-.ac.(/s.%-).g Loc.(3- vyl 6}-(@..%)-53.

3) Let Ve Hy (&,0:),6¢ H*i(a,,c),behf, ce kS

(Vo) 6m[Ve(x-f3)]-Cal(v-2).-8]: 0=

=(v. ®)(f:6) =p.La.(f.0)=v.(e.0).

Then

4) Let v € Hg (@;, @;) .  Then there exist Te *,;v ,
d'eh'."’ such that % = .o .

a) Let o'er’(a,,,&)reH*d(ca,/),b—cs,k, Then
V) =[y-x)e .6 ['T-{(d'.oc) «f33]-6=
=g [{(@.x).p}. 601 y.[(. ). B.6)])=

=7 [F{x.(Be6R]=(7.0)fx.(B.ON = V.(.6)

and analogously
z.(V.u) = fc--l.'a'-(d‘.ac)./s_‘!-('c-.v)o(a .
b) Let 6 e Hy (@ ,a;) . Then there exist
Eek:-”’,’zé,k;” such that 6’=§‘.7 and
6. (v. @)= (§:7) [(»x)Bl=§.{y [(p.cc).8]]=
=§A[1.00.)]-B3=§.{(7.9)x]-p]=
=§{(n-v)-(x.43)} sL§-(q-3)]-um(C-v)-@ «

C) Now let vy :h—H, ¥%:4h —H . be functora such
that ()9, = () Y, whenever (a. €L; we
proceed to eftend them. If {<, 5} = {1,23, <a:,/5) €
€ Hy Cay, a,, ) then, of course, put (<x,3))y =
2@y cPBY; . It (X,3) = <'r,d'> then e~
vidently (X)¥; - (B)y; = (p)y; )y 1t V 4 > H
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is another functor such that ()% =(«) ¥,  Wwhenever
e by (m=4,2), then evidently v = ¥ .

Definition. Let a set A be ordered by < , let A={R ;a€eA}
be a system of small categories. If lc@ is a full subcatego-
ry of Ae,, Wwhenever o, x’e A, oA < o’ , then A
will be called monotone. In this case denote byUCeSA 4, the

category A such that A7 =_ [ A%  and that all Je
are full subcategories of fo .

Lemmg 2. Let &, , &, be small categories, £ a full
subcategory of both, A N hj = £7  and the set by -
- 49 contains exactly one element. Then there exists the
sum € &, Lys.Ly > of A, and .k, with the amalgama-
ted subcategory £ such that ,, , are identical full
iso~functors.
Progf: Far any ordinal o denote by T, the set of all or-
dinals less than a .« Let T be an ordinal such that

¥ > card (K5 - £7) (we may suppose card (h - £7)>
> 0 ). Let f be a one~to-one mapping of ﬁ:-— £%  into
the set of all isolated ordinals in T, . For o« e T,
denote by ’h’z, « the full subcategory of j"z such that

}1,,""‘ =27 U(T,)$"" . Using lemma 1 and transfinite induc-
tion, one obtains a monotone system {4k, ; ot € T, § of
smll categories such that & = 11.1 , ”%’ Aéa/klf’ when-
ever o 1is.non-isclated and if o« = LR+ 1 then /fq,c
is the sum of lt?, and Jbz,‘ with the amalgamated subcate-

H

gory Jvz,ﬂ « Of course put' A BG‘;ST-E 4, 3 then evident-

iy 4 has the required properties.
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Proposition 1. Let &, , 4k, be small categories, £ a
full subcategory of both, A,:' n A&7 = £7 . Then there
exists the sun (R, L ,, L, > of 4, and A, with
the amalgamated subcategory £ such that ¢
dentical full iso-functors.

g9 Ly are i-
Proof: The proof of proposition 1 is analoguous to that of
lemma 2. It is only necessary to use the lemma 2 instead of
lemna 1.
wenmg 3. Let A, 4 be small categories; let £ be a
full subrategory of A , let A7 - £7 contan exactly
one element; let £ be a subcategory of k&, A% = £7.
Then there exists the sum ( K, ¢, ¢ > o & and &
with the amalgamated subcategory .£; C 1s the identical
full iso-functor, ¢ is identical on £ and on A7 .
Proof: Set A% - £7= fa } . We shall construct the ca-
tegory K with the required properties. On putting K% =
=0 , & is to be a full subcategory of K . It re-
maine to define the sets H (a,a), H (&2 ), Hy (a, &)
for all & € 47 , and also the composition e in‘: K.
Denote by f (or # ) the composition in 4 (or in Ao
respectively). Let £ e A%, put A =“Li’ {H, (a,e) =
x Hy (e, )} - Let Ry, be the following relation on
Agp  {x,w > Ry <&/, ' if and only if there

exists a 2 ¢ L™ such that ac.-_-o\:".h‘ae,(a,'zgcf‘(w.

Denote by R}; the smallest equivalence relation containing
R‘, .

* Ag
Put Ay = TR, ; 4 Cx,w e Ay, denote by

{a, w »* the element of Az which contains <« , )
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set (o, 00 )= @, o, (5%, 85, and Hy (@, 6)={a} = A% = {B} - Set
*g‘LJh,{H*(b;c Jx My (e,a1}. Let §, be the following relation

on By:{@,x > 55. <(¢¢', oc’) if and only if there exists a # €

€ £ such that o/=@®2¢, o= ¢ oc’. Let SF be the swallest

equivalence relation containing S . But B'= 54*/5* ; <, xde

6 &, , denote by ((u,a(,)* the element of B; which contains

oy 7580t (@& d= (B, e, o0 D%, @ > and Hy (f;2)={bix Bfxfaj.

Set Cal ) TH @, c) H, (6,d ) M d,a)}] ULt 1@, e)x Ko dt @ ol

Let P be the following relation on C: <, B, 3> P<Cax’, 8%, ¥’

if and only if either f3,B'c A", a® By = xP g b ¥’  or

there exist @, 6 € £™, B e A™  such that o= o *p,R%

Z!‘a” /sgp‘!"/?, 7= s 7. Let P* be the smallest equiva-

lence relation containing € . Put C*= c/P*3 for <, B, )€

€ C denote by {a,B, % >* the element of C* which contains

(k,B,q7; et (B, 7 0= <a,<a,fBy>,2> maH@,as

={at =~ C*~x{a} -

A) Definition of the composition o in K : Let

‘b;"bi;’bie‘ko;@‘ Hh(‘bil’ﬁi))ﬁzédh(éi:'&i)f fEHl. 4, &; ),

%= e He (b, 0 ), =Ky, ey 7€ He @, 8;), F=<p, 2> €

cH @, b)), v=<£,7,8 Y e H(@,a), 2=, 7., B > € He(a,a)-

Put

a) By fy= B ¥Ry s

b) § . % = <€ F e 0, 0;

D 7§ =<, e T 6>

O g g w o, P, 1w,

R R IITET R vhenever % € h7, and

ti- e @, P %y, B otherwise *’;

¥ - Bwl§hgbo b, w, > it 76 £™ , and

.;...‘E..'..ﬁa-q,?z?:(d‘f‘a,‘)g g >  otherwise x);

x) Evidently, if e L™ (or 9,6 L™ respectively), then the

two definitions coincide. Similorly in A ).
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g)f.?‘.;-(f,l.‘p,,,‘ﬁ.,);
h)7.1;=<§,7,13’."€,3""7.'{‘ ,2 > whenever 7,:},,«»’

7"‘3'<§‘F’Zf"""f"§o; AP, whenever 7511.""‘,

and t.r,;(g,q&(&!*f.)!‘g,,qﬂ; > other-

wise.

B) Now prove that the definition of the composition « given
in &) is independent of the choice of elements from < o , « >*
or {+ , ¢, «>% : The cases a) b) ¢) are evident.

) Let <@y, %, ) Sy {w,,%), ie. (u,'ﬂuqf"oe“ o, =0, %
for some 2, & £™ . Then, since o, & x, £™,
IR ACR L SIRENE S f“acz)f"@z‘ .

Let Ceay, o0, > Ry Kty 5 &) >, deee ay = g B
4 2,(“,1’= z’!af“z for, some 2, € £™ . Then, since’
by et™, w b ba, ) Ru, =P P H® ey .

o) Let (@, @, > Sy (i) , afy > ,  deee @ =g ™
,." 1% = 1‘." a;f' for some %, e £™ . Then evident-
Ly (@gs %> - <§,,B )= <G5> - §,7, B> when-
ever 7 € 4™ . It 9 ¢é A™ , then * ‘!"f e L™,
and consequently <, ‘."'(oc,,‘."‘g)‘.."rz , B> =
=K, PPy, 8

Let <§,"l, .3 P<§'7 ’2'119'> .

&) Let 7 ,m € A™, §4"1lf"1ﬁ=§’!v n'h 4’ ., Then
evfdently <((¢.,,0C4 ? a<§, 7, ;}>=<‘g¢"¢1> . <§l’ 7, 8y,

B)Let F=fbe,q/=FRe, naehy psb s o
some ¢, 66 L™, 7 € £™ ., Then
g, % 0 <§r"l,13)-<‘u.,‘!°(ac,!"§)9‘?z,1ﬁ)-
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s, R P g)rery, 62 8>S, Pl B g ), 8=

=<‘a.,,ac,,)~ (§’,‘tl’, ¥’ > .
£) is analoguous to e).

g) Let (9,2) Rh(PI, &l> ) il.e. P‘,Plf’ﬂ’

YA 2 ) for some J7 € £™ , Then

.
<?,3-)o<(L.,,OD.,>=<S°,3.I.M.,,OC,,)=<§D Q.I(u.,, a, >
Let < (gty,00, > S‘b:, <(a,; , €% >, leee ey = (u’ ,

o, = %, %™ x/f . Then evidently <p, A >. <(<.¢1’oc4 >=
“<p,A> -, x>
h) Let <§,7, P >PCg’, 77, ¥8’>. Then evidently <§,7,
F>. <1705 B> =(f, 7, 8" <§“7071} S and
Ko o ¥y e <§,'z,vﬁ> <§,,7.,1ﬁ> K§,7n P 7 WVhenever
Wy e BT, gE g boa L gy dod
Let f'=§h g, 9= i*!‘g',,lgél;.%” $=6% %’ for some
‘E,’G'e,z'"‘" ie’km' Then <§”Zidbfo&nc{b
DN SRS A MR I A . and
<§o&’l-{‘1&’£‘€’ s A P*<§e‘:’ 70&7‘?:&;’7 %’7 ¥’ whenever
7.6 A™ and
Cgoak (bR, Br=<F ebfhichaty, >’°7,,1)1>P*<f,
haherky, b > i (G kgboky dr-qp 0%
rRb kT, eh8OPKE BB )y By
whenever 17, € &A™ .

Conﬂequently <§] ? Qs > <€o;?, ,1’ > <f 7 7} > <Eo’ 70’ >,.
R S 02, B>=<E,, 7,8 > <g%, 1%, 8>

€) Now prove that the composition « 1s asaociative:

I.For o, 3, 7 € ™ evidently (X e B)eP=cte(Bog).
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II. Let ,f € A™, pudf@,s3eH (Ba), b€ &”. Then
X (Be)=la® B R, v>=(c.A)y .

III. Let o e k™, Ba<w,v>e H (Wha), b e &% .

1) Let ¥ =<p,06, 7> . If 6 € ™, then
(€l =CxPe,v>.<p, 67 7>m <o Bee, php®

it 6 b mm Cr2Ym a (B,

Bhed (o L p). o = <(x Rd®

Mhprke, 2=, p. ).

2) Lep y=<p,0%H,(a,c), c e’ . Then
(x-ﬂ)-a*:(a(‘!"‘u_,v)'<9,d'>- \’oc"-"(ec)ﬁh'
YMovberkoaa. ...

V. Let o« = <&, »>e H (&), ek’ .

1) Let B =<p,0,%> -

a) Let ¥ =<p', 0, =’ .

Ir 6, &' € }bm , then (d—-f;)o’y'.- <M’-§)‘!“P»fbd-‘!vr>.

Kph o ) = u, v Ppbeha b h gty pog);
If 6e A™, 6'¢A™, then a-(B.¥ )=, >
'<p‘!“6"?" ‘r:‘!“;bl, 6, = (@‘!"(V‘-“‘p."'K‘f“rf"p’)!‘
e, 2> =(x.p). 7
If 6 ¢A™, ¢'¢ AT, then x.(B.y)=Lg,V>-
Kp, o8 (xlvpH)P c’,e')*(y&(v&p)!‘s‘!‘&rf‘p’ﬁ‘
Yo"y (urlprbe, vy . Kp\e, v 0= (.0 7 -

If 6 ¢ hA™, 6'¢ A™, then a.(B.73)=<{,v>"
-<p, 6‘,1‘."9’?"5’;“‘@’) = ?’(Vf’p)i"é’,ef’p"!"b"‘?"r’)-
= (o .ﬂ) e

V)Lt 7 =<§,PreH. (a,e), ce o7 .
If 6 e A™, then (o(./3>.3r,<ﬂ,vf»‘o{»b‘fu,r>,
KE B r=@Poobobetrberbye . (B9 .
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Ir o ¢ A™, then («.p8) . paiuFEpyRe, 2>
K, ) =whhpyhehcr by by i, -

KPR R RSy - x L (Bay) -

2 Let S=<K§,F>e H.(a,e), c e b -
a) Let 7T eH, (c,d),d,eak’. This casc is dual
to IIL.2).
b) let 7 =<7, 2 > e H, (¢,a) . Then
(. B) 7= (b grhg). (F, 2> =

KPP e R AR x>, v . <F, PR 77, 0>
tx¢(ﬂ'?") °
£ = (p,0, *>e€H (a,a).

V. Let

Dlet f=<c, v, 1> .

a)Let y = <, %, ¥ -
1§, v, qe'»hm , ‘then evidentlyoc.(ﬂ.y)-_-(a_ﬁ)_a.-
I 6,ve A™, g ¢ H™ , then (a .f3). 9 =
-<9Tff‘rf”(eo,v,{>"<ﬁ:9’:“l’>=
=(phohrbubvbrbor g, yr=a.B.y).

If 6 e M™, véR™, ge ™, then (. ). o =

=Cphohod w,v, g barP gt yd=a g..

i & ¢ AT, vV, g€ ™, then (x.B).p -

= <§>,o",»rf“(u_*!v v‘f‘m‘.’ﬂ‘.”g‘f‘yﬁ)ax.(/s,?),

I e AT, vER™ pg A, then (x.p). p

K PF o Fu, 51> (T, F,¥> =
=<phohrhu, vR (b Ry, yr= x.(p.y),
¥ e¢hA™, vEAT, ¢ A™, then (x.8). 7 =
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a<@,a'!*"(in‘.;"-(w!~:>‘.‘,r!*n)!’9,v,r>“- x . (B.y).
S LA™ g am, gehn, then (@.B). 7~
<p, 6ReRury, 1 Fakobyrea. By -

It 6 ¢ A7, vé¢R™, 9 EA™, then X.B8). 7 =
=p.6®rd gk s . (TP, ¥ > =
=<p;, oM P byt (s b )b,y =<p, 0, 2>

K, Y2 )Ry, )y = . (B.) .
b) For 7 € H(a,4) , b ¢ £  the case is dual to

“01) a).

a) For e He (& c), ceh” the case is dual to
III. 1.

b) Let » = <:rr,ac>e He (472 ) .

If 6 4™, then (a.p). 3= <5a hoborbw,y)-

Km >= Kphebabu, vhae) - . (B

Ir ¢ ¢ JL"”, then (a.p).y=<p, 6% (k)b y)y.

K, =g, R vt )Ry E ey =¢pT, 7> -
(e, VET, > = . (B g )

VI. Let o = (e, > >e He(a, b)), beh”.
1) Let fe H (B,0), ce A,
a) Fc € H, (c,d), de h” the case is dual to
II.
bl Let 7 = (mot> 6 He (e,a ) . Then
@B ep=C e, v¥aNM ey = . (B.p) -
2) Let B e Hy (& a).

a) For g€ Hc (@,2) the case is dual to V.2) b).

b) For y € H  (@;¢), c € &% the case is dual
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to Iv.2) bl

This completes 'i;he proof of associativity.

D) Evidently & hA a full subcategory of K o Now we shall

construct the functor ¢ : b — K , identical on Z. For
€l™u L% put (x)g=o. For Lre £’ x€Hyll;2)
BeHy (@, ) put(x)gmiZy ,%5,B)g=<B, 25 > . For
O0cHy(a,a) put (O)y=<e, 6, € > - It isee

8y to see that o' 1s the required functor.

E) Now let H be an arbitrary category, and ¥}, @ & — H,
%: h— H be functors such that ()% = () ¥

forall e L™ v LT . Evidently, if & e A7,

e ) Sp<e’,ec’y . lor (&, me) Ry <’y @’> )

then () . @ = (@I &)Yy  (or (X)¥p - (@) ¥ =

=@y, « (@)Y  rTespectively); ad if '

K, B, 77 C S’ 8, 7>, then @)y » BIY, - @)W~

= (<) - (B)y, + 7)Yy  Whenever f3,/3'¢ AT, )y (BIYye
s ()Y, = &)y, - (Byp +(#°) Yp,  whenever 3, ' e &A™

Consequently, put ()i = (<) ya  whenever o € A7,

Ky x D)y = (@) @)y, for (e, € He (85a); (Ko, @ d)y=

=(x)y, - () y¥a for (,wdeHy (2, 4) -

For Coc,3,7 > € He (@a,2)  thenput (<, /3,7 2)Y=

=)y, + (B)yys (7)Y, Whenever J¢€ A (K, 8, 3 2)y=

=) yp (B)ya - () ¥4 whenever 3 € A .
Bvidently ¥ has the required properties. The unicity ef ¥

is gviden‘lr.
Note 4: Evidently, if there exists a category H and functors
%ih—H, Y 4 — H where (4)y, = (@)yy
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for all « € £ and such that Y4 1s an iso-functor, "
then necessarily & is also an iso-functor.
However, in general & need not be an iso-functor; thus,

consider the following example. A

Let 4,4 , L be categories
described thus (cf. the dia-
gram):

L= A ={b,e,c’,d§

}l«’-’ {’0} e, c’r d} a’} 2

“, @y v, Ve £™
«, x', @, ﬂiﬂ,eﬁm_'em

6e £™ - L™ (the identities are not indicated);
wha- p= W’ vhx o b pt, cR gy, R V.
Then evidently <&z, 3) S (»,x >, <¥, %> s <6 P> 8
5; v’ S‘z‘_ <.¢1’, A’ ) , and conseauently (B)y =

= ()< -

Lemng 4: Let A’ be a full subcategory of a small category
h.Let ¢’z B —> H’ be a functor onto H’ , iden-
ticai on (4’)%. Then there exists a category H and a
functor ¢ : & —»H  such that H’ is a full subcate-
gory of H ., g’ is the restriction of ¥, %o 1is
identical, and if ¥ : A — G is an arbitrary func-
tor such that ()Y = (B)y whenever oC, /3 € (A)™
amd (L)’ = (B’ , then there exists exacily one
functor 7 : H—>G with e gq = ¥

Proof: Let R be the following relation on A™ :

A RpB e x,Be(h)™ (oc)y’-; Brly’. .Let R* be the

- 465 -



smallest equivalence on 4™ which contains R and such
that if & R*«’', AR*A’ emd <. or a’.pfp’
aTe defined, then ot .5 R* x’.B8’. Let H be a cate-
gory such that Ho = a7 and Hy (a,4) = fa}
xHy (@, &) /on X {4}  whenever a, e A®
(th_e definition of the composition is obvic_ms). A cegteix}
category H 5 isomorphic with ﬁ , haa' the properties re-
qui;-ed in lemma 4.
Note: (¢, H>  will be termed the prolongation of H’
to A through &’
Lemmg 5: Let 4, /o  be small categories; let £ be a
full subcategory of A and a subcategory of & , let
4% = £%. Then there exists the sum <K, ¢, ¢ ) of
4 @mad {1 with the amalgamated subcategory £ such
that ( dis the identical full iso-functor, ¢ 1is idemti-
calon £ amdon A7 .
m: If oc 1is an ordinsal, denote by T, the set of all
ordinals less than “a .+ Let = be an ordinal with
caxct © > eard h7- L% (we may suppose A7 - £L7>
> 0 )eo Let + be a one-to-one mapping of A% ~ £
into the set of all isolated ordinals from T, . For
® e T, denote by .h_  the full subcategory of J»

such that ;h’ - £70 (T, )-F"" . Now apply
transfinite 1pdnet4on. Let y‘ € and assume that one
has constfucted the systems = { L. 3 € T35 )

Sp=in;xeT . }, K, = {u,x e T, } with the
following three properties
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CAy) Ky, S, are monotone systems of emall categories,
Ry =k, H =4 ; Aoc. is a.subcategory of R 3
A: = h: ; denote bY L : A, >R, : Rk the
inclusion~-functora.
2¢) Fx is a functor of h onto A ; Lo: € —> L e

identical; every z‘/lu is identical; if o < 8 < 7,

then 7 /A‘ Y *
3y) If H is a category amd if Yp ' —H, 'I’l.,"}"-c"’ H

(& < 7°) are functors such that (re)yf = (e )Wy

whenever (. € £ ,  then there exists exactly one func-

tor Y : Ky — H with Vh""d'%’wlnx”ﬁn"ﬁ'%'

We are to construct &, ; A, , 3, . The construction ie

evident whenever 7 is a limit ordinal: put A - 5 J’v.,c 2

-S % ) v ‘<r7(“.'rhug,aaaume T-/s+4-i

Dnnote b,y <{® , »*¥ ) the prolongation of A to }Lr

through 7, Since (A*)7 = (’h’?’ >r’ there is zﬁ; N (/s’f)r-

= ,g,/‘:; the set (A*)7 - /5; contains at most one ele-

ment. Denote by < &y , tF , 1 >  the sum of 4, am

A%  with the amalgamated subcategory 4y . Then ¢ '{ : oy

— ’b’?’ is the full inclusion-functor and 7 is identical on
* 30 7

A, &nd on (A*)7 ., set Ly = b - ] amd A, =

=(s*) 7 ; then 4, 15 a subcategory of Jezr , denote by

T . ' 5, o*

Ty i Ay = ’k’r the inclusion-functor. Let I : 4%y by

be the functor such that I = F . Ty . Put g, =& .57

since d’/ - in ad 7  is identical on Mg 1 there
is ""/h,, = 75 - Thus there have been defined A, ; s
1r such that 1. ,) md 2,,,) hold. It remains to
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prove that, to given functors ¥ : & — H, %r: ha,—-> H
for which (L)yg = (@) Y, whenever 1. € £ , there
exists exactly one functor 7, - : &k — H with

>
Y b Yt Yk, = Ay Ly ¢ Yo TR YA
Yy, are given put ¥ = z. Vo, where C: l%—whr

is the inclusion-functor. Then there exists exactly ome
functor Y, : ”'73 — H such that Y = L, « ¥
¥ = e T, . . But then () = ()Y =
Fo<tp- Tyt mt e (@Y = (OF
=W)¥F = ) Yo, whenever (&, ¥ € &g and
(w)yp = (v) 18 i consequently there exists exactly
one functor Y ¥ : * — H such that ¥, = d.y*.
Now we must prove that (W), = () y * whenever
{a,e(/ap)”"'. Thus let < e (4 Y™ . then (u =

=(3¢) An for some 2¢ ¢ JL;,” and hence (ﬂr)y/* =

’
=) ¥ ¥ = (00) P Y ¥ = o0 %fcam?- GO Ap- Lp Y= (Y-
since 4, 7 , o7 > 1is the sum of h, ana A*
with the amalgamated subcategory /5/, 5 there exists exact-
. =.7.
ly one fu:ctor Y. : /kr — H such that yj, =,
.lp‘r, Y o=, zy,r; therefore Yy, = by * % =Ly - Yy,
%"T’Q'.W*- Q.?’T‘. fr ‘Vv = Ay - T,'r N T/
Using transfinite induction.one defines systems K. =
={ ;xeT,}, S,t.:{/o‘;acs"l;;,&:{{‘;xe‘zr_‘{such that
1) 2) 3,) are satisfied. Put K --ms_rthx , de=

note by ¢ : o — K the inclusion-functor. Put

A~'-¢CST—,A“ ? 7(,=,‘%4.r9(,“.'rr}en A h b, » 1s
a subcategory of K ; denote by Ly h—> K the inclu-
sion-functor, put & = g « L, . Then evidently

(K, v, o> has the required properties.
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Bropogition 2: Let .k, » be small categox;iea, let £ be
a full subcategory of / and a subcategory of &, A"
A A7 = L%. Then there exista the sun ( K, , gy o &
and A with the amalgamated subcategory £ ; is full
identical iso-functor, <f is identical om A7 -

Broof: Denote by &* _the full subcategory of -& such that
(R*)” = £7. Let ( KX , * > be the sum of
A&* ad A with the amalgamated eubcategory £ . Let

{ K, 4, x=)bethesunof R and K* with the amal-
gamted subcategory A& ™ . Then evidently < K, 4,%* xx?
hgs the rec_xuired propertiea.

Lemmg 6: Let &, , R, be small categories, . be a subca-
tegory of both, A7 = L7« &, &7 A ,ki""'. 2" . Then
there exists the sum of R, and 4, with the amalgamated
subcategory £ . )

Proof: For @, & € £% denote by H (a, £~ ) the set of
all n-tuples (d_‘,,,..., o«, ? (Wwhere m = 1, 2,... )
such that there exist ¢, ,...,c e £7 with ¢, = @ >

= &, , € H*_ (c‘-q,cA)UH*z((i » c,).Set M =
-"‘L’J” H(a -?r) . For (x,,...,%, >& H(@, &),
K PyyeeesBm D€ H(lr e ), Put (Cyyueey O >« <3y 5000y Bm? =
= (Gygyeeny @opy 3 By yoeng Bon > + Lt mOW R be the following re-
lation on M : (ac.,,...,ac,u) R<AB ey Bp-y? if and only
if there exists an 4,6 {4,..., m — 41} such that of =

/3& for 434,2,-..,A -4 a‘, xé“’ -'/34 either
in ky, orin k, and X, = B, _, far H = A+ Lyeee) Mo

Let /& be the category such that &’ = £7 and that
He (@, &) = {a} = ﬂ(a,,&-)/g*f {&d tor a, Lre b’ .

- 469 =



The definition of the composition in A¢ 1is evidenmt. Now it
1s easy to define funotors ¢ : .k, — K, & : R, — &
such that { &, , ¥, > 1s the sun of K, and -k,
with the amalgamated subcategory £ .
Nota: Let .A,; 4, be small categories, £ be a subcate-
gory of both, Ry = L%« kj , & A k] = L™ . Denote
by { &, , & > the sum of R, and e, with the a-
nalgamated subcategory .£ . Then not necessarily (lo,,‘”)q;n
n(k™ g = (L™, , ad &, need not be iso-
functors. Examples will be given.
Examples: Consider the diagram. Let 4: e {1,2,37 . Let
‘:k e ’. {fa,£,c,d?.
Denote by (%, <P4 ’ sz)
the sum of ’;ﬁ and ':hz _
with the amalgamated subcate-
gory 'Z « Set S =
- ={€, 2t € r % }"
a) Let 1&;"‘-5 v {ot,/&,;b, 6, w}, %’:- Suvip,r,e,0,v ¥,
2™« S U{B, 6,07 - Let ac?‘v/zed',/s?‘tg'-fo;
6% 7= ¥, @ 1 pu e . Then necessarily (w) %, =
g-(y) 9, » consequently (4 "") 9, n(!h"")b 2 (™))% .
b) Let R = Su-('oc,/.i,p, ,(u,vi W= iB, 7, 0,6,vI0 S

%50([3, G',p,v} Let x "/3:-6",/3"‘:.7‘:;0,6"‘:.7"’1’,

‘a(. f‘p-‘u.'rhen necessarily Q«-)‘tf, = (v)"y.,

consequently 29', is not an iso~-functor.
Similarly one may construct small categories ’Jo,, ’ : 2 ¥
such that ’g‘ is not an iso-functor.
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3 4 3 ¢ 3 ¢ : .
NW, put /&«1 .iL-{ ;k:' ) Altie(’ 4‘02 ’ ,t g‘&{ ,e ’ denofce
by ( A, &, 1 &f, > the sum of 4, and S, With the
amalgamated subcategory £ . Then neither ¢, nor &

is an iso-functor and (AJ*) g N (k') @, 3 (™) < -

The categories Jeq , &R, s £ may be turned in semigroups

by the adjunction of one element Y- such that 2.0 = &

vhenever either 2, o€ zk:"' and g¢ !“' <l is not
defined, or 2¢, 0 € ,k;”" and s %t o 1s not de-
fined.

Proposition 3: Let ,k7 » &, be small categories, £ a
subcategory of both, k:"fn zk:’;' = L™ ,h: ) lo: =
= 47 . Then there exists the sum of R, and ., with
the amalgamated subcategary £ -
Proof: Denote by E‘, (or ]v—,z ) the full subcategory of
4, (or A, ) such that R = £7 (or R = 27
respectively). Denote by < Rk , & , 972 >  the sum of
,E and :E,,_ with the amalgamated subcategory £ . Let
i € {4,2}.since %ﬁ’,' is one-to-one, 4, = (R )F;
is @ subcategory of _E ;denote by ?,’,L Py — F the
inclusion-functor. Lef t‘Z : :E‘ 3'?';) Ay be a func-
tor such that &, . T, = @; . Denote by (q:.",,‘l!‘)
the prolongation of 4; to k; through g , amd by
DRV, —-7,51‘!" the full inclusion-functor. Let _
(j’{,“ G, Y be the sum of & and /b_?» with the a-
malgamated subcategary A4 (use lemms 5). Denote by )
(A, T,, T,> the smof %k, and R, with the
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maléanitad subcategory K . Now We prove that
(,h,g:‘.g,. 1,99 T, > 18 the sum of 4, and e,
with the amslgamated subcategory £  « Evidently
f‘é’l.%"q’ .I, :*1—)*, ré;a?:-%- zzfzk‘ —"h are func-
tors such that ()G = () 7}; whenever (« € £.
Now let there be given functors %;°* b, > H, 4 : by, —+H
such that (k) ¥y, = (@)Y, whenever (<« € 4.
Let ¥tk — H,y,: Rk, — H  be such that

%/I/, = 1?1' ) Vi{n -y - Then tl:here exists exactly

. 2

one functor ¥ : R — H with &, T =Y, P ¥ =Y -
For 1 =1,2 put %azi:ﬁ,%:ﬁi——bH-
Since Y, = &,.0; & , there 1s ()Y = (V)y;
whenever sV E Ii ) (((4.)&: = (V) c?i H consequent~
1y there exists exactly one functor 1/1.;*-' Aj;" — H such
that @F . ¥ = ¥y, . If e A; , thn (Y =
g((u,)yr‘.* . Indeed,  =(»)G, for some v & R,
md then ()T = (VG . T =) Fp =)y =G 4
‘ '-'(?’)é::-"ﬁ*‘ () %*. Since (f&;, L s P D is
the sum of & and AF with the amalgamsted subcategory
4, , mdeince W : Fo —H, ¥*: A7 H, there
exists exactly one functor Ty: : j;.,; — H such that

i»T}’: -7, q‘.ry_a = y* ., Now,ry_{,':»k,-r H,
"q? : 3:2 — H, and ()Y = () ¢y Y = (I =)y,
.Y, = ()Y, hemever € R ; thus there exists
exactly one functor, ? : o —pH such that T, . ’z? =Y,
T,.¥ =% . bButthen @f 97, .¥=
-q;". % ."ii?- 9"‘."-1}:.'*- Y (1 = 1,2) .
kIf w' : Mo —y H 1is a functor such that
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g¥ . g, T .17- Y, (¢ = 1,2) , then necessari-

1y 94.4'.‘.5- Y,* (i'= 1, 2) . Hence T,;.‘lTr -

=, and therefore ¥ = P .

Note: It is easily seen that the theorem may be carried over

for a set of small categories in the following manner:

Let {4k 3 e Ay be a system of small categories,

let £ be a subcategory of all R% A ak‘:, - L7,
RN R = L™ whenever o, '€ A, o« +

Then there exists the sum { fo; { Y5 X € A3 >  of

the system { f,, 3 € € A} with the amalgamated subcategory
A (defined analoguously as for the system of small catego-

ries in the definition giveh previously).

be 4 tixere exists an o, € A such that £ 1s a full sub-

category of all R, for o € A ~ {X,§, then S, 18

s full iso-functor and (A )z ¢ (R ) =

= (l"")se‘. .

H«‘«-l
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