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Commentationes ilathematicae Universitatis Carolinae
6, 4 (1965)

MODEL V[G?’c—)%] IN WHICH /G IS LIMIT NUMBER

K., HRBASEK, Praha

In [3], some models V[ay — @, 1 were comstructed.
In this note the discussion of existence of models VL[ —>
-’0/3] is performed for the case that B is a limit num-
ber.

Wwe shall use the notation from [1],[2],[3].

(1) Metadefinition: A model V of the Godel-Bernays set
theory X 1s said to be of type [a —> &y ] 1if the fol-
lowing holds in the set theory: &g, € ("/3 , and
(a) if ¥ 1is a relatively cardinal number of the model V¥ ,
+ &x &15," or ‘“’wﬂ €* £ then f 1is a cardinal number
of the model V
(b) *’“"A is the first cardinal nuwber of the model V
greater than ’&w‘, . (see [3].)

(2) Metatheorem: If the singularity of g is provable,
then there exists no model of type [ &) — Wy J.

— Proof. In such a model Ay eX f e* k“"n implies

FIE 3 &ow . but @, is a singulor number, hence there is
an @ such thet @ & &, & eay, ap = Ua . From this ve
obtair; easily lu“,n £ U“":"a. , I,: s kg, ) Lfe* K>
- T ax 4z, 1 ., Hence I@/’ e* b,

, 8 contradiction.
In the following, we assume the generalized continuum

hypothesis to be valid in the set theory. Let 4 be an in-
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accesible cardinal number of the set theory, @ a set of po-

wer 1% . Let £ be an ideal on € such that there is a

@y € B with (.x)[xel-)iea)rj. For every

xe 0 let (ex), t(x)> be a topologi&al space,

and { ¥ c(x), T* t(x) ) the topological product of the
X€B x66

spaces <c(x), t(x)> by the ideal £ as defined in

[3J.1f e, t > is a topological space, we define

@ (¢, t)m mim{@y; 1(3altc@ébastéd =, ¢ (see [21),

%(c,t)-mbn{q,-; Wy = I’, £  some basis of <c,t >} -
(3) Theorem. Let 1t Ke(x),tx)>)e ) for every
£
%X €& © . Then (a(gggc(x),xl's t(x)>) e B,
Proof. Let @ be a system of open sets in the space
{ XKeCt), T4 (X)), Ex@), T = % . Denote by B(x) some ba-
Y6 @ xXeé

sis composed of open sets in the space < ec(x), t(x) ) ,
such that m"’h Kex),t(x)>) . 1In <x3“gc(.x) P
;l::t (x)) choose the basis generated by the sets @
with g € x“_/.’» (x) (see [2], def. 3,4). We may assume that
@ contains elements of this basis only. Define
(%) febr=TFrcfLeDF)c&TH e a & (X)xeIt)>
> #(XePpX)]&(3g) LG ea & (X xeDHFIND@) >
~+(x)=9g(x)] -
The axiom of choice implies the existence of a function B
such that
Sne BLD(B)= & & ($){feD(B) > [BFleak

& (X) (X € DCFIND(B(F)) - £(x) =(BEFNXxNI?-

Now choose g, € @ and put G, = {gs; § - Having
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defined G, forall @ 6 6 € wy,, , ve define G
by (x x )qeﬁésfaf)ffeb&ﬁ(#)s?‘g U@‘,Z g=B&1,
and G =_ U G'o., . By induction one proves easily that

6e +1 -
E—'o_e P, € 2 . Then there must exist & A € a with

h ¢ G. Set y=IHINDUG , then 4 + /4

because jpﬂgo.-:ﬂ) also Y4 € @y . Set M, =
=h/f¥ . From (k) we obtain 4, € & , and there is a €
such that T () =y s %egUGP 5 then B (#)€
€Gy c G is an obvious consequence of (xx*), Next, A #
#B(h,) implies h N B(h,) £ f ,  because (x)[X €

cEDAIND (B N> hx)=(Bh,))(x)] . Hence b= Blh)eG.

This is a contradiction.
We shall construct models V [a) — ) under the

assumption that &  1is a regular cardinal. The parameters

of the model V  will be chosen as follows:
Set 8 ={L; @ el B} , and define:
I. imd = {a«bf(_e o

II. G(a )= QX for every L € &
(e, t J: for every

.

III. Definition of the space
L e 0 define
Fric F&DFl=aq &WH)e &,

feclL) =

feb(L)=s Fne fLIKF)sw &WHISa & DFled)

1

?-{g;gec(b)&f’sgf for fe 4C),

"4(L) is the topology on ¢ (L) generated bY basis £ (¢ ).

Let £ be the ideal: xe L =xec 6 & X € @,  and
4 )> .
Ce,t? the space (ngc(c),LL t (L

IV. For L € @ and < 7)) € &, x G we define
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R (Kpdda)a{f; fecE (£ N(F)mF} .

It is then.easy to prove the following statements:
For every L € O there 18 7, (KeCL), t(e)>)e D ,
and then by theorem (3),

1) mle,t)ed ,

(2) @, € v(c,t) (since the intersection of & monotone
system of @), sets from the basis of the space {c, t )
is open set, if “",a € &  , and it is non-void set, if

@ = @ ).
By [2] theorem 4, condition (a) from metadefinition (1) holds

in the model V(imd, G, <c,t >, x, 4 ) .

Obviously &, is a 1-1 mapping of A&, onto .&wb
oC
in the model ~V .

Hence condition (b) from metadefinition (1) alsc holds in the
model V .
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