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THE FIRST MEASURABLE CARDINAL AND THE GENERALIZED CONTINUUM
HYPOTHESIS
Petr VOPENKA, Praha

Let #4 Dbe the first cardinal number such that on a
set of this cardinality there is a non-t:_‘ivial ultrafilter
J closed with respect to countable intersections.

In the present paper, there are found upper estimates
of the cerdinality 2%% on the basis of estimates of 2°%
for all R, < ®g .

The paper is written in the GOdel-Bernays set theory.
The proofs are carried out by the method of models. Never-
theless,it is possible to obtain all the results by classi-
cal means within the classical set theory.

Definition 1. Let V¥* be the class of all functions
with domain cv e« The letters f,g,... dencte variables
for elements of the class V* , Put

f2g={x; f@)=g(}ej; f é g ={x; flx)eg@)jej.
By a set formula is meant, the p.p.f from [17] such

that there are no symbols for the special classes contained.

If ¢ 1s a set formula, then <f* 1s the formula obtained

from g by replacing the symbol € by the symbol g

and by restricting the variables to the class V * .

Metatheorem 1. Let ¢f (X,,..., X, ) be a set formula
which does not contain free variables other than x.,,...) X

n
Then the following statement is provable in set the-ory:
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Py fn) = {os @ (£ @),... £ ()] e 5

for every f,... %, e V¥ .

For proof see [3].

It is known that there is a model [T of set theory such
that its universal class is V* and such that the membership
relation for sets of [° 1s the relation 2 from definition
1 (see'[3]).

It is also known that there is a function G , defined
on the class On , such that G(e) 1s an ordinal number of
[ for every ov € On , that G(A) £ o(x) for peot,
and that for every ordinal f of the model M there is an
e On with £ & G(oc) (see [2], [3]).

If xeV , we denote by k, the element of V* defi-

ned by
(oc)[oceaa,ﬁah.x(ao)= xJ.

Since ®; is the first measurable cardinal, G(oc) £
& k,, ~holds for every o € ey, . Put a=0Glay) .
Obviously d é k“,“,, « It 13 easy to show that the ultra-
,£ilter J can be chosen in such a manner that d(«) =oC
for every oK € Q.4 o In what follows, the ultrafilter
J 1is assumed to possess this property.

Since [ 1is a standard model (see [3]), the function
6(coy) 1s @ cardinal of " for every cardinal & . If
d’«, 18 & strongly inaccessible cardinal, then G(cJ )
is a strongly inaccessible cardinal in the model [T .

)J
Let M be the class of all strongly inaccessible
cardinals. The symbol (o * @ (o) 1s an abbreviation
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for {ajPX)Vdaxe wytes -

Lemmg 1. (o) (o € 1) .

Proof. 43 d = Glaw,g ) and @yg 1s strongly inacces-
sible, 4 1is stron-ly inaccessible in [ ., By the meta-
definition 1, {ovs d(0) € Mj e 5.

Dafinition 2. Put 4, (@) = 2% por every o € @y,
et g, =6(4,) .

Lepzu 2, card ¥ = PAC '

Proors By the metatheorem, d, is the cardinality of
the power set of d in the model [ . Hence card 1/“, P
< 2&"9‘ . Hence, it suffices to prove thst there exists
a 1 -1 mapping of I (cwa ) into the power set of d
in M .For m s @, put r, (®) =da(x)n m
(for every oL € @ .4 ). bvidently =, & a.1f

. £
s m , then r,, == T’ *

Theorem l. Let 4 € <,q . Then

(W[ 2%= W g 1 I < A

Proof. Put d_d.Coc) = &_, s - Obviously, the ele-
ments d,~» for ey form the set of all cardinals
between d and d, . Hence, there are at most as many
cardinals between @Jg, and v, .

Theorem 2. (ak)* [ 2™ ex  J— ™ Xa, 4

Proof. Similarly as in the previous proof, all the
cardinals between d and d, (in [7 ) are the dd-'s
for 4 € @y -

Analogous theorems may be obtained for other estimates
o the cerdinalities 2°% .
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