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ON LENZ'S PROBLEM ON THE INDEPENDENCE OF THE AXIOMS OF
AFFINE SPACE
Ivean KOLAR, Brno

§ 1. An affine gpace (of dimension » 3 ) is defined
as a set of points (denoted by capitals) in which some sub-
sets called lines (denoted by lower-case letters) and pla-
nes (denoted by lower=case Greek letters) are distinguished
in such a manner that the axioms (1) - (10) hold (see (6],
p. 138). By parallel lines are meant lines which either coin-
cide or lie in a common plane but have no common point.

(1) For every A, B % A  there exists exactly one
line containing A, B .

(2) Every line contains two distinct points.

(3) There exist three points not on the same line.

(4) For any three points not on the same line there e-
xists exactly one plane containing these points.

(5) Every plane contains three points not on the same
line.

(6) 3 A, B+ A areonaplane oc and ( € A U
then (ex .

(7) There exist four points not on the same plane.
1) the bar serves to denote the line or plane containing the

mentioned objects.
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® 1f all& 2) end xx>a, B854 are distinct planes
with a common point (', then o and 3 also have another
common point D + C -

(9) Two distinct lines parallel to a given line do not in-

tersect.

(10) For every line £ there exists at least one line
L'+ £, £ 2.

H., Lenz, loc.cit., poses the questjon of the independen=—
ce of the axiom (8) relatjve to the others. In the present
paper we replace (9) and (10) hy the usual axjom of paralle-
1ity

(P) Through a given point there is precisely one line
parallel to a given line,
and we solve the question of independence of (8) on (1) =
(7) and (P). In the present author s opinion, this solves
the kernel of Lenz s problem, because (9) and (10) as well
as (P) have a two-dimensionsal character, while (8) has a
three-dimensional one.

In § 3 we show that (8) may be deduced from (1) - (7),
(P) and from the following assumption

(F) Every line contains at least four distinct points.
In § 4 we show that (8) cannot be deduced from (1) = (7) and
(P) only.

§ 2. In this section we consider a_gtructure with axjoms
(1) = (7), (P) and the following
(T) Every line contains at least three distinet points.

- s ey wees o

2) a ll &~ denotes that @ and & are parallel

lines.
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Lemme 1. Let A, ¢= 1,2,3, be points not on the
same line, S¢ A A, Ay, A eSA A' +S A,,A A KA, Aj,
i,7=12,3, 1+3..ThenAAAn A’A —/-

I

Proof. Denote x = A, A, A, , oc=A;A; ; and
suppose there exists a8 Pe o N’ . Sineom- IIA:: A;- ,
the point P  cannot lie in the planes SA; A i) i, J*
=1,2,3, i %+ j, and the intersection oc N o’
cannot be a line; hence {P} = & N . '
I. Assume there exist{Q{= PA nA Au {@f= PA n A A’ .
Denote by 4 the line parallel to PA through A
and set { R} = anQQ, hence R*a . Further denote
by t the line perallel to A, A, through R and

set{T}=‘tn5Ak,k-"2 Then T, + A, and

from A, 7\ VAL A it follows that there
exist { U,‘f - TAg n A Ay . Since
tHA A, 1Alz , wehave tNna'=gd  ana

t iU, U . Then X meets TJ—TJ,_ at a point V.
Evidently {V} =A3 QA A U, G, , hence the line
ﬁ; aJ-._e_g passes through V¥, which is a contradiction
with 2 |l PA; . Thus we have o« N &’ = &7 &

II. If e.g. an ] AT-/—QI , We choose E, e 14173 ’

E, + A1 , A3 . The line P—E, meets at least one of
the lines A-z—:—‘\g, A_/-‘\ \, say A-‘—A, at a point
El.Set{E.'}=SE nA’A k=1,2 . Since { P}~

%3 "

=k n«’ thor;ia EA IIE‘Az, and by the sub-

stitution (A A‘- '2’ g ) we obtain « na'= &
3 2

according to I. R
Theorem ). Let A € 11,12,11*11 VA'E 44 4,
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let £, be the line parallel to 4  through A’ ,
k= 1,2 ; then Zﬁznl—ﬁ;=ﬂ'

Proof. With respect to (I) one can choose M, € £, ,
M, *A, k=12 sothatMMznl'l' =4 . Further
more choose S € AA’ S+ A A and set
{M, }= SM, . 2, + Then My My Il W; , and

from lemma 1 by the substitution ( ‘1 :‘41 ’:13 ) we

obtain l,llnl;lga,@'.

§ 3. Now agsume thet (F) holds.

Lemng 2. Let a,lla,, a,+a,,Aea,, k=12, let
A wAL A A A A A A, + ATA,  and let a]  be
the line parallel to @,  through AL . Then a.', ] a{z .

Proof. I. A, A' meets A, A, st a point B .
Choose S e A, A, , S+A,,A, andset {S'}=

-.g_BnA;A'.Alaochooae Miea, ,M %A, ,ena
eethz}HSM,n , {ML 3= BMknak , k= 1 z .
From a,lla,,A A, I A7 A, it follows by theorem 1
that S'a) n Sa, =2 , ena thus M Il M, M, .
Analogously we obtain 57—/‘4'2 Il m 2 P hence
5M; 15"M, ama q, am @, e in the plane
mz . I af, meﬂf— a,; in a point C', a, would
meet a, at the point BC'n a;a, ., which is
mouibh with respect to «, ll% Thus we have a, i a, .
. A,A, 1A, A, . ‘

Choose B, € A, A; + B+ A,, Al | denote by £

the line parallel to A; A,  through B,,{Ci=L£nA, A,
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and choose B, € A; Ay ,B+A,,A; C.Set {53 =

=B.,B,_r\A~1_A-2 , {5’}-51_52_0'4-’-1_2’1 . Also choose M, € @, ,
M, A, eand set{M,}= Ss_ﬁd',aaz,M,Q:m na,,k=1,2.
B
= &M, , hence a,, a, ¢ S’A7 M, . By theorem 1 ,

——

7 7 - / /
Ala, nA, a, = Y74 , ond a, cannot meet 2, -
Iheoren 2. If a,la,,a,+a,,C ¢ a,a, , then

the intersection of the planes 442 and a, C is a

In the same manner as in I.it can be shown that -

line.

Proof. Choose A, € A, , K = 1,2 , genote by £
the line perallel to A, A, through C and choose
Ay, A’z e l, A; +C AL+ A; . Furthermore denote by
@, the line parallel to @;  through A, k=1,2,
and by ¢, the line parallel to 4@,  through C . Now,

/ l / ’
by lemma 2 we have a, I a,, e ”aé__’_ e, lla.1 , therefore
all these lines lie in the plane £, , and from
Cec,ey there follows ¢, = ¢, , Q.e.de

Thus, according to theorem 2, the copdition (8) holds
in_the strycture with the sxjoms (1) = (7), (P), (P).

§ 4. In this section we consider g structure with the
axiomg (1) - (7), (P) apd the following

(B) Every lipme contains exactly two points.

By a_schemg will be meant a set Y in which some four-
point subsets are distinguished so that

(a) ¥ contains either exactly four elements and no
distinguished subset or at least five elements,
(b) the intersection of any two distinguished subsets

contains at most two elements.
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To a schemar f we construct a _pew schema #(¥) 1in
the following recurrent manner (analogous to Hall s construc-
tion of free projective planes, see [l],[ZJ,BJ).. _

1° The elements of the schema: Jf will be termed points
of degree 0 g and the distinguished subsets in L g planes
of degree 0 ;

2% with every triple of mutually distinct points of deg-
ree at most 7. which do not lie in the same plane of degree
at most 7”1 we associate, in a one-to-one manner, a new ele-
ment g (M,N, P)  aistinct from all preceding ones. The-
se elements will be termed points of degree m + 1 and
the sets {M, N, P, 10(M, N, P)} will be termed planes
of degree m + 1 . )

The set of all points of degrees m = 0,1,2,... we
denote by - F(¥), as the lines in F(¥) we define
all two-point subsets, and planes in F¢ ¥) will be all
planes of degrees M = 0,1, 2,00

It is easy to see that, for every schema &, the set
FCY) 1a fying the ax Q) - (7), (P),

£Bl.

Example }. If f, is the schema formed by a five-ele-
ment set {A; B, C , D, E}  with one distinguished subset
{A,B,C,D 3, then (8) does pot hold in F (¥, ) , since
e.g.. ABICD, E ¢{A,B,C,D} and by comstruction
we have v (A,B,E) & n(€,D,E), hence ABE n
n CDE = {E} .

Example 2. If ‘fz is the schema formed by a seven-ele-
ment set {A,B,C,D,E, F, G} with four distin-



guished subsets {A,B,C,D3}, {A,B E,F?, {A,C,E,G},

{D,E,F, G ¢, then theorem 1 doce not hold in F(Y¥,);
on substituting ( A -‘£l f-% A’ .‘_e_‘l! ;eé ) the
: A AB AC E EF EG

supposition of theorem 1 is satisfied and the conclusion is
not, because ABC A~ E FG = {D} .

Some fundamental properties of schemas and their freex
extensions are studied in [3].

§ 5. If neither (F) nor (B) is true, then according to
the following lemma 3 gvery line contains exactly three
points.

Lemps 3. All lines of a structue with the exioms (1) =
(7) and (P) have the same cardinal number.

Proof. Let @, 4 be any lines. Choose Aca, B &
€&, A%+ B, Every plane is an affine plane, hence accor-

. ding to & well known result tard a = caxd A_B, card AB =
= card & end thus cand a = card 4 .

In this case, it may be also established that (8) need
not hold, but a construction of an example is more difficult
and extensive, and will be not exhibited here.
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