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ERROR MINIMIZATION IN APPROXIMATE SOLUTION OF INTEGRAL
EQUATIONS
Jaroslav MILOTA, Praha
In the present paper we shall study the approximate so=-
lution of Fredholm’s 1nteg4ral equation

(1) gx) - AL Klx,t)gtrdt = £0x)
]
using the method of the degenemte kernel, i.e. by replacing
the kernel K (x,t) by the kernel
fud .
(2) K”(x,t)nk%a,k(x)b;‘(-b) .

We assume that
K(x,t)e L, (0,1 (0,1), f(x)e€ L, (0,1),
(3) { A is not an eigenvalue of the kernel K (x,t)-
We suppose that the functions @, (x), k= % ...,  forn
an orthonormal system in L,(0,1) . L, will stand for the
subset formed by the functions a,(x),..., @ (x) .
The solution of the equation (1) can be approximated by
the solution of the following equation
(4) Y (X) = Af1K”(x,t)1y“ t)dt = f(x) .
We shall suppose that we c;n find the exact solution of (4),
that is we do not take into consideration the error of the
numerical solution of (4).
If the conditions (3) are satisfied, then
(5) (E-AKY'<c Evxal .

Here E stands for the unit operator. In th:j.s paper we
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shall use the following theorem (see [1), where IK - K_ I
denotes the norm of the operator K -K, .
Iheorem 1: If
(6) IAIK =Ky B (1+ 12U D) < 1,
then A is not an eigenvalue of the kernel (2)

t 1lit
and the inequality |.;\|l-f(x)llf1*u“’;“"

(0 BgG)-y G & IK-KA G =K N+l 1)

holds.
According to this theorem it is reasonable to find the
minimum of AK - K, when the & (t) vary.
We shall use the following notation

- it fix) - 5 ak ak(x)f .
(8) E(w,L,) = puts nt B3

M 1s the image of the unit sphere in L, (0,1)  under
the operator K .

Thgorep 2: Set

1
(9) Z (t) -B/‘K(f,t)a,‘cfu{
and n
(10) K, (x,t)= 2 & (x) & (t) .

ked
Then for arbitrary functions 4 (t),..., 4;, (t)

in (2), the inequality
(11) IK-K 1 2U1K-K, 1 =E@m,L,)
holds.
Dafinition J: The kernel (10) will be called the optimal de-
generate kernel formed by the functions @, (X)yeeey @, (X).
Remark: To obtain the optimal degenerate kernel we can also
use the method of moments for eqﬁation (1). This means the
following: An approximate solution of (1) is assumed in the
form

- 330-

cay



yix) = fx) + 2 % a, (x),

and the coefficients o, are determined from the condi-
tions
(¥ -AKy -f, @ )=0, k=1,...,m ;
(see [1]).
The convergence of the optimal degenserate kernels to

the kernel K (x,t)  1is stated in the following theorem:

Theorem 3: Let {a,, (x)}*% be a complete ortho-
normal sequence in L, (0, 1) .

Then
(12) mme(m,t_n)=o.

The following converse theorem holds.
Theorem 4: Let the solutionsof (4) converge to the solution
of (1) for all f(x) from a set dense in L, (0, 1) .
Let there exist & constant A  independent of m so that,
for the resolvent [,  of the kernel (2), the inequality
(13) I, h s A

+ oo '
holds for all M . Then the sequence {a&,, (.x)}“.,, is
complete in .

Remark: Theorem 4 can be strengthened at the cost of further

assumptions on the kernel K(x, t) , but this is not im-
portant for our purpose.

We are able now to determine the minimum of € (2%7,L,)
by varying the subsets L,  of dimension m .
Definition 2:
(14) 12::‘ Eme, L Y=d (1) .
See[2] ,



Set
91
(15) K-(x, t) = [KCf,x)K(E,8)df

4
(16) KR (x,t) =/K(x,f)l<(t,f)d§‘ .

The kernels K. (x,t), KR(x,%t) nave the same

sequences of eigenvalues
0 < .?l: £ Jli £ ... .
We shall denote by gf; x) and 9: (x) the cor-
responding orthonormal eigen-functions of the kernels
K* (x,t), KR (x, t) respectively.

Definition 3: The kernel

R L
A & 4 x)g(E)
(17) K, (.x,t)=k'21 A, 1

will be called the m =th extremal degenerate kernel to

the kernel K(x,t) . The subset L n  formed by the

functions g: (x), k=1,..., m , will be called the

extremal subset of dimension m, of the kernel K (x, t).
The following theorem gives the reason for the prece-

ding definition:
Zheorem 2: For all m,

A 1
(18) d, (@) = IK=-K I = 75— -
The method of minimizing I K = K, I makes it

possible to establish estimates from below of the error.
This estimate is stated in the following theorem:
Ihsorem 6: Let ¢ (X) be the solution of (1), and ¥ (x)
the solution of the equation



19 T - ALK, (x,b) F, t)dt = FOx) -
o

Then

(20) AUy "C_f(\X)-'l-};’n(x)ﬂ E‘AIdn(m) .
llepll &1
The right-hand side in (20) depends only on the kernel
K(x,t) , and so (20) gives the estimate from below

of the error made by replacing the solution of (1) by that
of (19).
Definition 4:Denote by X (A)  the set of kernels K(x, t)
satisfying

(21) I K("-r/")"L2 (0, x(0,1) = A
ad put
= d () -
(22) CLW (A) K(’xw’:)tdc(A) n K
Th :
A .
(23) d,, (A) ~ v
(Here a, ~ 1’;,, denotes strong equivalence, i.e.
dm, G - 1

m —» + 00 m

Assuming the kernel K (X, t) to be sufficiently
smooth, it is possible using the method described in [3], to
describe the asymptotic behaviour of d (37L) ., Thus we
get the following theorems:‘

34K °K
Theorem 8: Let either "5“;7 or -37;- be con-

tinuous and bounded in (0,1) for 4 = 0,.--, m . Then,

for any positive € , there holds

m 4
(24) d, ()= 0Lm- T ¥ Ey
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For symmetric kernels we obtain this better result:
Theorem 9: Let K(X, t) be symmetric and satisfy the
assumptions of theorem 8 . Then, for any positive
there holds

€

(25) d (a@t) = 0[n-m+i)e] .

If the kernel is analytic we obtain the following theo-
rem:
Theorem 10: For any fe (0,1) 1et there exist two
functions ¢ ({) , ¢ (f) satisfying
c(f)>0, 0< a(f) <1,
and such that

+00

(26) K(x,t) = Z o, (x, 20t =)™,

where ' -
locy, (x, §01 < ¢ (F)a™ ()
(27)

for all X € (0, 1) . Then there exists & positive con-
stant /3 such that

(28) T d, (@)= 0CLe ™ .

The whole theory can be applied to the approximate solu-
tion of boundary problems for differential equations.
We denote by G (ux,t)

Green’s functlon of the pro=
blem

(29) [p(x)g/(x)]' - g (x)g(x)=Ff(x),
g0) =g(1) =0 ,
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where  (X) 2 0,n(x)&n, >0, ana @(x), p'(x)
are continuous in the interval < 0,1 ) -
The set of Green’s functions G (x,*t) of the
problem (29) with f(x), @ (Xx) satfsfying the conditions
O0<to s n(x)sEn, 0% g(X) & q,
will be denoted by G (fi,, 74,5 Q1) *
Using the estimates of the eigenvaluesof the Sturm=-

Lio\}v:llle operator, we obtain

Theorep 11:
1
(30) d,, (92t ) oy

G'Eg'z‘f‘tnf"qi%)
forang 0 < 1% 2 1%, 0s4q,-

(Rere aq, X If,ﬂ, denotes weak equivalence, i.e. @, =
0ty ), b= 0(a,) )

The prooft of all these theorems and further results
applying to boundary problems for differential equations will
be published in the Czechoslovak Mathematical Journal.
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