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Commentationes Mathematicae Universitatis Carolinae

6, 2 (1965)

ON CONTINUITY STRUCTURLS AND SPACES OF MAPPINGS
M. KATETOV, Praha

A type of “continuity structures" [cf. 7] is considered.
The spaces in question occur, e.g., under the name of "quasi-
uniform spaces” in [5] (where some further references are:gi-
ven), and under the name of "P-Raume" in [4]. They have been
also used implicitly, as tools for investigation of topologi-
cal spaces, e.g., in (4], In the present note, they are cal-
led "merotopic”. The main results (section 3) concern spécea
of continuous mappings (of spaces belonging to a somewhat nar-
rower class). These results are closely related to some known
theorems on spaces of mappings of topological spaces (1,3 ]
~ and of "quasi-topological" {11) ones. Thus, equalities such
as (Y%)® g y**%  gng obtained, and it is proved that,
roughly speaking, a merotopic space X has a base (in a spe~
cific sense) consisting of totally bounded sets if and only
if every ":J_z » Y topological, is a topological merotopic
space (i.e., its structure is induced by a topology).

In addition to the main propositions, other results are
included; some of these are needed in section 3, whereas
others, although essentially re-formulations of known propo-
sitions, may deserve an explicit statement in @ new context.

Nost proofs are omitted. Some of the omitted proofs ae
well as some further results apnd examples are intended for
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publication in another paper.

1.

l.1. As a rule, the notation of E. fech, Topological Spa-
ces (rev.ed., in press) is adopted. It is close to that used
by N. Bourbaki, and only some deviations need be explained.

If X is a set, then the set of all Yc X is denoted
by exp X o If %1 and 27 are collections of sets, then
{711 A [71] denotes the collection of all MA N, M €
€eM , Ne? . 1f O, are collections of sets
and for any A € (L there is @ B € 6/ with Bc A,
then we shall say that & minorizes I .

If £ is a mapping (or a single-valued relation), then
its value at a point (element) x will be denoted by f£x ;
if X is a set, then f[X] will denote the set of all fx ,
x€X ., If F is a set of mappings, then F[X] denotes the
set of all fx, feF, x€X; o [PW] , where o
is a collection of sets of mappings and 272¢ 1is a collection
of sets, denotes the collection of all F[M] , F € o ,
M e 1 -, ete.

There is a sharp formal distinction between families
{x,la € A} and collections (in particular, between families
of sets and.collections of sets). However, this distinction
will ‘often be disregarded, and, e.g.gproperties defined for
collections of sets will be carried over to families of sets
and vice versa. We shall also often use the same symbols, e.g.,
for a space and for the set of its points, etc.

l.2. The following evident proposition will be useful.

-
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7t , then some

C:.

Lemmg. If o~ is a filter, ¢* = |

1=

LN

74, winorizes .
1.3. The definition of c;osure‘ spaces may be recalled.

Let E be a set. & (binary) relation = on exp E which
assigns exactly one set 2+ Xc E to every set Xc E will be
called a closure operation on E if (i) =@ =60, (i1)
vT(XuYl)= ¥ XurY, (iii) Xc = X ; (E, T) will
then be called a closure space. If, in addition, 2 (zX) = X
for every X CE , then == is called a topological closure re-
lation (or simply a topology) and (E, = ) is called a to~
pological space. Clearly, this concept is equivalent (in an
obvious sense) with that of a topological space defined in the
current manner by means of open sets.

1.4, Definitiop. Let E be a set. Let s non-void system
" of non-void collections of subsets of E be given, such

that
(1) i 7271 € ", %% c exp E and 7, minorizes %L ,

then 91, € " ;
(2) 12 W v, € ", then either W, e " or
mz € F’;

(3) if x€E, then ((x)) e I".

Then we shall say that I is a merotopic structure (or
merotopy) on E and (E, M) is a merotopic space; every
collection 921 € M  will be called [ -micromeric or
X =-micromeric (or simply micromeric if the space is clear
from the context).

Remark. In "merotopic”, the first part of the word comes
from the Greek "meros" - part. As shown below (3.10), impor-
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tant \merotopic spaces are generartqd by topologizing certain
parts of a set. Thus "merotopologi‘cal" should be uéed, and that
only for a narrower class of spaces; however, we prefer an ab-
ridged term used for a wider concépt. The expression "microme-
ric collection" corresponds to the Russian "gistema s malymi",
see e.g. [10] . = In [5], the term "quasi-uniform" is used
for spaces equivalent (see below, 1.20) to merotopic spaces.
If the standpoint of the present note is adopted, i.e. if me-
rotopic spaces are the main objects of investigation (these
generalize unifornm, topological, etc. spaces), the name "qua-
si-uniform” seems less appropriate.

1.5. Definitiog. If I, I are merotopies on E and
Me I, , we shall say that [ 4is finer than [} and
that [, 4is coarser than [, and we shall write "€ I} .

Convention. The set of all merotopies on a given set will
always be considered with the order just described.

1.6, Propogitjon. The set of merotopies on a given set is
order-complete. If {a} is a family of merotopies on E ,
then sup [[ = U I .

1.7. Refinition. If (k,, [3) ,(Ez,f‘z) are me-
rotopic spaces, then a mapping £ :(E,, y Y = < E,, p) )
is called continuous (more specifically, merotopically conti-
nuous) if ¢ [ l"., lc r.z . A bijective continuous mapping
£ 1is called an isomorphism if £~1  1s continucus.

1.8, Merotopic spaces as objects and their continuous map—-
pings as morphisms form a category, which will be denoted by
M.

1.9. Proposjtion and definition. Let (E, = > be a clo-~
sure space. For any x € E , let M.x be the collection of
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all neighborhoods of x . Then the system f.';, of all

7 c exp B minorizing some %) 1is a merotopy. We shall
say that r; is induced by the closure operation T , or
that it i1s closure-induced. If 1 is topological, then we

shall call Cc‘ topological.

1.10. Proposition and definition. Let ( E, o) be a
proximity space. Let [~ consist of all 7l c exp E se-
tisfying the following condition: If E= (J A, ana Ay,
Bys X=1,..., n, are distant, then, for some k and some
e, Mn A, + £, XnB, =0, Then . 1is a
. merotopy on E . We shall say that it is induced by the proxi-
mity 0" or that it is a proximally induced (or simply a
proximal) merotopy.

1.11. Proposition and definition. Let ¢ E, 24 > be a
uniform space. Let [, consist of all %7c exp E such that,
for every U € W , there is a set M € % with N
% Mc U . Then r‘% is a merotopy on E . W#e shall say that
r\

L2
(or simply uniform) merotopy.

is induced by U or that M is a uniformly induced

1.12, It is clear that if U is the category of all u-
niform spaces, the functor which assigns ( E, MG, ) to ( E, %)
and f 1CE, My )= (B My Y to £ :CE, WI><E) U
is a one-to-one covariant functor from I4# into M| . A
similar assertion holds for the categories of closure spaces
and of proximity spaces. R

1.13. Definitiop. Let K be a class of merotopic spa-
ces; let E be a set. Let {f"} be a family of mappinges
£ :IJ“ ~ E where I~ are merotopic spaces. If t‘here ex~-
ists a merotopy I such that
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(1) CuyP>e K, andall £, : 2 —¢ E > are con-
tinuous,

(2) if <E, 0> K andifall £, : T — <E, 6>
are continuous, then I & 6,
we shall say that [ is inductively generated in K (for
short, K =-generated) by the family {£, 7 . If K consists of
all merotopic spaces, we shall simply say that M is (inducti=-
vely) generated by {f,{ .

Let {56-? be a family of mappings g,: E —> 'y&
y,_ are merotopic spaces. If there exists a merotopy [ such
that

» Where

(1) (& P Y>e K and all g&:(E,P)—&y& are
continuous;

(2) ir (E, € Y e K and all g, : {E, 6> — Y,
are continuous, then 8 & I ,
we shall say that [T is projectively generated in K (for
short, K =-generated) by the family {g;, f . If K consists of
all merotopic spaces, we shall simply say that M s (projec-
tively) generated by {g,}.

1.14. Propogition. Let E be a set. Every non-void family
{£,} of mappings /fa': X, — E (respectively, L,: E—>T,),
where L, are merotopic spaces, inductively (projectively) ge-
neratés a merotopy on L .

Remark. The system U £ [[J] 4is fundamental (see 1.17%)
for the merotopy inductively generated by f“: £ xa, R?—E.

hw. If X 1is a merotopic space, then the
space generated by a surjective mapping £ : X — E will be
denoted by X /f and will be called the quotient space of X
by £ .
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1.16. Defipition. If <Y, M » 1is a merotopic space,

X C Y , then the space projectively generated by the identity
injection of X into Y , is called a subspace of < Y, M) ,
Clearly, (X, 6 )» 1is a subspace of ¥, "> iff

XcY and 6 = N expexp X.

1.17. Detinition. Let ( E, M) be a merotopic space. A
system 6 c I' is called a I -fundamental system (of mic-
romeric collections) if " is the least merotopy on E con-
taining O as a subsystem. A collection &Fc exp E is
called a8 base for ( E, " ? if there exists a fundamental
system © such that W € 0  implies W c & .

Bxamples, If © is a topology on E , then a collection

of open sets is a base for (&, I ? if and only if it is

T
an open base of < E, T ? . The void system is fundamental
if and only if I’ is the finest merotopy on E .

1.18. Definition, Let < &, ™ ) be a merotopic space.
Then a collection % c expE will be called a cover of
(E, "' > or a [ -cover (or a merotopic cover) if, for any
9t e " , there exist V € 1) and M € 977 with Mc V.

1.19. Definition. Let E be a set. A non-void system 2
of covers of E (i.e. of collections % such that U =
= E ) is called a quasi-uniformity [see 5; cf. also, e.g., 6
and 9]Jon E if it is a filter under the refinement order,
i.e. if'the following hold:

(@) if % € {1 , 7Y 1is a cover of E and %) refines
M),then W e N (b) ir veﬂ,Weﬂ,then
[WInlWle L .

1.20. Propogition, Let E be a set. If " 1is a meroto-
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PYs then the system of all [ =covers is a quae;—uniformity.
For any quasi-uniformity L on & s there exists exactly one
merotopy ' such that () consists of all [ ~covers.

Rgmark. According to this proposition, merotopic spaces
coincide, essentially, with quasi-uniform [5 ] spaces.

1.21. Propogition and definitiop. Let < E, > be a me-
rotopic space. For any Yc E let < Y consist of the
points x € E such that the collection of all (x,y) , ye ¥,
belongs to I" . Then & is a closure operation on E . It
will be called the closure operation (or the topology, if this
is the case) induced by I' .

1.22, Definitiop. Let < &, M ) be a merotopic space.
Let T* be the topology (necessarily completely regular)
projectively generated, in the obvious sense, by the ring of
all continmuous real=-valucd functions on < ", E ) . We shall
call T* the topology CR-induced by I .

Evidently, the topology - induced by [ is completely
regular iff it is CR-induced by [ .

2.

We are now going to consider certain special classes of
merotopic spaces. The most important of these are the filter
spaces “(related concepts occur under various names in the li-
terature [see, e.g.,8] ).

2,1, Datipition. A merotopic space < E, M ?  will be
called a filter-merotopic space or simply a filter space if
there exists a fundamental system for [T consisting of fil-
ters. The subcategory of 'MI whose objects are all filter
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spaces will be deno;:ed by F.

kxamples. If ( E, ¥ Y is a closure space, then ( E, I, ?
(see 1.9) is a filter-merotopic space. It can be shown that if
(E, N> is a metrisable uniform space, then <« kK, f",u Y is
a filter-space iff ( E, W > is the union of a totally boun~
ded and a uniformly discrete subspace.

2,2, Proposition. If (L, > is a filter space, then
the following condition is satisfied: if U is a [ -cover
and if, for every U € U , %, is a  ["=cover, then the
collection of 211 UNYV , U e™M , Ve ¥, ,isa M-
cover.

Proof. Let 2% € I be a filter. There exists a set
U, € U such that M, c U, for some M, € U . Denote
by M, the collection of all M e W1 contained in V¥, .
Clearly, N

., 18 micromeric, hence there exists a set V,’e

€ %, ,eandaset M, € W such that M c V , hence
MDC Uon V° .
Remark. The converse does not hold, however, even for uni=-

form spaces, since a locally fine [see 5] uniform space need
not be a filter space (cf. below, 2.13).

2.3. Propogition and definition. Let I’ be a merotopy on
E . Then the system T  of all those # c exp E which
minorize some filter ¢ € [ , is a filter-merotopy; it is
the coarsest filter-merotopy finer than ['. The merotopy rf
will be called the filter-modification of [ .

Example. Let YL be a uniformity on E and let
{mrE, U bve a completion of < E, 2 > . Then € &, f‘:?
is a subspaée of JTE endowed with the merotopy induced by
the topology of < JrE, IrmL > .
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2.4, #e are now going to introduce two 'properties of me=-
rotopic spaces analogous to regularity (complete reéﬂarity)
of topological spaces.

Definition. Let  E, " ? be a merotopic space. Denote
by T (respectively, = *) the topology induced (CR-induced)
by " . For any %% c exp E , denote by 2 [27] (respec-
tively, ©*[271] ) the collection of all 2 M (respective-
ly, z7*M ) with M € 27l ., If, for every Wl e " ,

v L?] (respectively, =*[71]) belongs to M , then
" is called regular (completely regular).

Clearly, if ( E,  ? is a topological space, then
{E, My ? is regular (completely regular) iff ( E, = ?
as a topological space is such.

2.5+ Clearly, every cover of a topological space X (or
of a®uniform space) is refined by a cover %) with the follow-
ing property: if ¥*c ¥ md UWY* =X, then »*
is a cover. However, an analogous assertion does not hold for
merotopic spaces (it fails even for closure spaces).

Therefore, there are two notions (at least) corresponding
to that of a compact topological space.

Definition. Let { E, "> be a merotopic space. If,
for any [ -cover I, there 1s a finite J* c ¢ with
Ug* = E, then we shall call ( E, " >. full-bounded.
(We use this term instead of the current "totally bounded" to
avoid expressions such as "basically totally bounded” or even
"partially\ totally bounded".) If every [* -cover ¢ contains
a finite [ -cover, we shall call < E, " ¥ precompact.

Clearly, if <( E, » ? is a topological space, then
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the following assertions are equivalent: (1) (¢ E, = > 1is
compact, (ii) ( E, f‘t Y is full-bounded, (ii1) ¢ E, I, ?
is precompact. On the other hand, let ¢ E, ¥ > be an ap-
solutely closed Hausdorff topological space. Define a closure
as follows: x € t'X iff 2 UNnX+p whenever U is a
neighborhood of x . Then ( E, I, >  is full-bounded,
without, in general, being precompact.

2.6. Lepma. Let (X, " ) be a merotopic space; let
Y be & subspace. Then the following conditions are eduivg~
lent: (a) Y is full-bounded, (b) for any fundamental family
{@Y t and any M, € %@,  there exist a(l),..., a(n)

o

e G,
{%1,} such that, for any choice of M, € # , there are
a(l),..., a(n) with (¥ . 2 Y. '

] alt)
2.7. Clearly, any subspace of a full-bounded (precompact)

o Y, (c) there exists a fundamental family

space is full-bounded (precompact). If (E, , M. >, 1 =1,2,

T

are merotopic spaces, f is a continuous mapping of ( Eq ’ r; ?
omto (E,M, > ead (E, > is full-bounded, then
¢ E,, f"z Y is also full-bounded. However, an analogous as-
sertion does not hold for precompactness.

2.8, Prgngg;t‘ign. A merotopic space ( E, I ) is full-
bounded if and only if every ultrafilter on E belongs to .

Proof. I. Suppose that an ultrafilter ¢ does not be-
longto M. Let %  consist of all E~-F , P €0 . Let
W el ;e o € "', there exists aset N, ¢ 77T such
that F ¢ ¢ implies F - M 4 #. Since ¢ is an ul-
trafilter, we obtein M N I =0 for some ¥ € ¢ . Thus

NcE-F €%, aoldw have shown that Y 1is a
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[ -cover. Since (U Y* 4 E whenever ®YW*c % is fini-
te, this proves that ¢ X, " ? is not full-bounded. -
II. Suppose that < E, ™ > is not full-bounded; then the-
re exists a [ -cover %) such that UMW ¥ = E for no fi-
nite ¥»* ¢ % . Clearly, the collection ¥ of all E -
- Up*, w*c W finite, is the base of a filter.
Let 771 o %  be an ultrafilter. Then %7 & ' , for
otherwise there would exist sets V, € % , M € 24
such that M, c V, , hence M, Nn(E-T¥ ) =0, L=~V €
e ¥l , Which is contradiction.

2.9, Example. Let M consist of the numbers * 1, *2 ,
¥3, ... . Consider the merotopy I” on M projectively
generated by the bounded real-valued functions £ satisfy-
ing ﬂ2&;[3319!:‘.’(11) - f(-nl= 0, Then ( E, " > is completely
regular (this follows at once friom the fact that [T induces
the discrete topology). It is not difficult to show that
(k, ™ ? is full-bounded, but is not precompact.

2.10., Propositiong. Every precompact merotopic space is a
filter space. R

Proof. Let € &, " >  be precompact. Consider a [ =
micromeric collection 79 ; we may suppose that £ ¢ 777 .
Consider non-void collections ‘¥ c exp E such that, for
any T,,... T, € ¥ , the collection of all M € #7T con-
tained in T, N «eeNT, is [ -micromeric; let 6 be
the system of all such "% , It is clear that @ is monoto-
nically additive. Therefore there exists a maximal ¥* ¢ 6 .
Clearly, T, € ¥* , T, e ¥* implics T, n T,e¥*,
and § ¢ ¥* . We intend to show that %*e ' ., -



Let 9 be a [ -cover; since ( E, I" ) is precompact,
we may suppose that A is finite, YU = (U ,..s, Uy) o We
assert thot U, € ¥* for some k = 1,..., m . Suppose
not; then, for k =1,..., m , there exist TA,,,,..., T*,Ahe
€ Y* such that the collection| /%, of all M € %L con-
tained in t!kn Th,q N eee T‘h,hh does not belong to M.
On the other hand, denoting by 291’ the collection of all
M € @t  contained in each To,i 2 E=1yeee,m, 12

= lyeeey by o e X::ve WL’ e ' . Since e, ve
have %Y = M'—h‘;{' 7 e I". This 1s a contradiction,
because {U,? is a [ -cover, hence some W € " is
contained in some Uy (therefore, in U, N 1:&,1 N oeee

n Th,hk , which is impossible).

2,11, Definition. A merotopic space < Lk, M) will
be called filter-uniform if there is a uniformity 2 on E
guch that ™ 1is the filter-mcdification of the merotopy in-
duced by WU .

2.12, Thecrem. Let € =, P ) be a nerotopic space.
If (., M is proximal, then it is precoapzct, uniform
and a filtes space (hence filter-uniferm), If ¢ &, M > is
filter-uniform or precompact or topological, then it is a
filter space.

Proor. izt (uy, P be proximal, It is well known
that (., MY is uniform and precompact; by 2.9 ( E, " >
is a filtizr :vace. The second assertion is clear sincc a pre=~
compact ( wy, MY is a filter apace.

Z.13, Theorep. A merotopic space is (1) tcpolcgical and
proxia.l if and only if its merotopy is induccd by a compact
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topology, (2) topological and unif'ér.n if and only if its mero-
topy is induced by the topelftgy (or the fine uniformity) of a
paracompact space, (3) topological and filter-uniform if and
only if its merotopy is induced by a complete uniformity Cor
the topology of a complete topological space ),(4) a uniform fil-
ter space if and only if it is a dense subspace of a space
whose merotopy is induced by a paracompact topology.

3.

3.1, If {xula € A} 1is a family of sets, then the natu-
ral mapping of X, into the sum Z X, , which assigns
{a, x > to xe€ X, , will be denoted by inj, . The projec-
tion of the cartesian product T‘T{X‘} onto X, will be deno-
ted by pro,ja’ .

3.2. Definition. Let { L, } be a family of merotopic spa-
ces, X,=<X,, N >»; put X= T X_ . The space { X, "?
inductively generated by the mappings inj, 3 XL, — X is
called the sum of { X, ? and is denoted by = X, -

Bemark. By 1.14, remark, the system U inj (7] ie
fundamental for X X, -

3.3. Proposition. If X, are filter spaces, then X X,
is a filter space. ’

Jede I X, =X, 40 are arbitrary merotopic spa-
ces, then various merotopies may be introduced on the set
il X, i however, each of these secems to suffer from certain
serious shortcomings. This is also true for merotopies an the
set of all continuous mappings of a merotopic space into ano-
ther. We shall not investigate this question here [ for various
kinds of products see, e.g+, 2, 2al , and we confine our
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examination to the case of filter spaces, for which there is
a natural definition.

3.5. Dafinition. Let { X, ? be a family of filter spaces,
Xo=(X,, Mg >y put X= T X, . The space ¢ X, " >
projectively generated in F (see 1.13, 2.1) by the mapp-
ings préj, : X — X, will be called the cartesian (more
precisely, filter-cartesian) product of the filter spaces .'I.'a_
and will be denoted by 'Ll: X, -

Propositiog. A fundamental system for T<( X , 1 > " con-
sists of all filters o c exp (TX,) such that proj,L(ef] e
€, for every a - ‘

3.6. Proposition and definition. Let X = <X, " 2,

Y ={X, A > befilter spaces. Denote by C the set of
all continuous mappings £ : £ = Y. Then there exliats ex=
actly one filter-merotopy € on € such that (1) the map-
ping of the cartesian product < C, 0 > < X into Y
which assigns fx to < £, x ) 1is contimuous, (2) if a
filter-merotopy ¥ on C possesses the above property,
then Y £ 6 . The system of all filters o c exp C
such that o [ (] € 4 for every 9 € ' is funda-
mental for O , The set of all continuous £ : X = ¥ en~
dowed with the merotopy & will be denoted by ¥ * ana
called the filter space of mappings.

3.7. To make possible a concise and exact formulation of
the theorem which follows, we shall adopt the following con-
ventions: if X, Y, %X, X,, Y, ale merotopic spaces,
consider (1) the binary relation consisting of all pairs
<2, 8%, £t ey® "% g e (¥*)® | such that
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£(x, z) = glg)(x) ,forany x € X , 2 € ¥ ; this re-
lation will be called canonicel (for Y ¥ > % gng (YT ),
(2) the binsry relation consisting of all < f, {37, f e
e Y*XTa ) 8, € yTa 5 such that, for any a and any
x € X, , fla, x) = g5 (x) ; this relation will be called

" canonical (for ¥ Z*%e ama Ty Lo ); (3) the binary re-
lation consisting of all ¢ f, {8372, £e (MY, )z ,

g, € yf such that for any x ¢ X , f(x) = {g, (x)f;
this relation will be called canonical (for (TT'U‘_)x and

m ('yf) ). If it is clear from the context which of the ca-
nonical relations is meant, we shall omit an explicit mention
of spaces involved.

A priori, it is not clear that the canonical relations
are bijective for the spaces in questions. This assertion is
contained, however, in the following proposition, in which
A =S means that A and J3 are isomorphic.

3.8. Theorem. Let X, ¥, Z ,%, Y, be filter spaces.
Then

yxnz s (yx ) z ,
Yy x T (YT,
(TY)* = Ty*) .

More specifically, the corresponding canonical relations

determine isomorphisma of y*r=x and (y%)% , of
Y %o ana T(y™), ama e (TY* e Tey®).

Proof. We shall prove only the assertion concerning
Y2~ 2% ama (Y5)®, Let T=(X, Y, Y=
=(Y, N, 2z MN>.Let £ay™ ¥  1¢

s€Z, let (x) = £(x, z) for every x & X ; then, for
' &
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every 7 € f; y 8 lW1=¢ [(x)] x[%1]1], hence g, [M)e Fy;

thus g, 1is continuous, g, € ¥%T , Let g be the mapping

which assigns g, to ze€2.,If 9L e I}, MSI},then

b3
gLPLILIN] = LL L < ] € Fy ; hence g [27] is microme-

ric in %% . This proves that g is continuous. We have

shown that the canonic relation maps . ¥ %™ * into (¥ )% .

Similarly, it can be shown that if g € (Y*)%  ana £(x, z)=

= glz)(x) , then £ € Y¥* % .| It remains to prove that the

bijective mapping determined by the canonic relation is islo-
morphice.

Let ¢/ be micromeric in @/1" £, Let o™ denote

the collection onto which ¢ is mapped. Then, for any AT €

€y, 7 el , the collection F*[AILM] =L =N

belongs to I . Therefore, o * [27] is micromeric in

Y®, for any 9L € [, ; this proves that

; o** is micro-
meric.

3.9. Definition. A merotopic space ( X, " >  will be
called filter-localized (or simply "localized") if, for any

micromeric filter ¢ , there exists a point x €& X such

that the collecction of all F u (x) is micromeric.

Example. A uniform merotopic space is localized iff it is

complete (as a uniform space).
3.10. Propositiop. A merotopic space is a localized filter

space if and only if it is inductively generated by topologi-
cal spaces.

Proof. Let ( X, ™ > be a localized filter space. Then
there exists a fundamental family { %, la € A} such that
. every mw is a filter with a non-void intersection. For

- 273 -



every a € A, let a topology <% (a) on X be defined as.
follows: an open base for € X,w(a) ? consists of all

M€ t, andall (y) where ye X~ NP, .It is easy
to show that the mappings d : { X, I, (a))-b X , where J
is the identity relation, inductively generate the structure
P . = The rest of the proof is omitted.

3.11. Lemmge. Let X, Y Dbe filter spaces. If Y is
regular, then 'y’” is regular.

3.12. Proposition. If X 1is a filter space, Y 1is a
regular localized filter space, then 'y-"’ is also a regu-
lar localized filter space.

Proof. The space YL 15 regular by 3.11; thus we have
only to prove that it is localized. Let of be a YT -
micromeric filter. Then, for any x € X , the collection
'af[ (x)] 1is a micromeric filter andl ‘therefore we can choo-
8¢ a point ¢ (x) € Y such that the collection gliall
Plxlu(g(x)), F € 0 , is micromeric. Nov:'i’c:nsider"
the mapping ¢ : £ — Y . Clearly, for any € X and any
P €& , g(x) belongs to the closure 2 (F[x]) of
P[x).Let % be I -micromeric. If xe M, M € %,
F € o, then F(x]lc F[M], hence ¢ (x)e 2 (F[M]) ;
thus, for any M € %7 , (Ml c v (£[K)) . Since ¥ 1is
regular, the collection of all 7 (£ [M]) is micromerie,
and therefore ¢ [ 1] is also micromeric. We have pro-
ved that 9e'y°‘. Forany P € o , put F*=2F u
v (g) ; let: of* coneist of all P* . Let WL be I -
microméric. For any M € 92 and any P € & , F¥[M)c
C v PL[M]; therefore, Y being regular, ‘the collection

e—

-
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o/ *[791] 1s micromeric, This proves that Y% ig locali-
zed,

. 3.13. Definition. Let X be a merotopic space. If the-
re éxists a base A for X consisting of full-bounded sub-
spaégs, then X is called basically full-bounded.

It is easy to see that a topological space is basically
full-bounded iff it is locally compact.

3.14. Remark. It can be shown that quasi-topological spa=
ces as considered in [11], coincide essentially with basically
compact merotopic spaces (i.e., spaces possessing ; base con~
gigting of subspaces whose merotopies are induced by compact
topologies).

3.15. Proposition. Let X =< X, " ? be a localized
filter space. Then X is closure-induced if and only if,
for any x € X , there exists an %97 € "  such that every
I -micromeric collection 77 with x € N7 minimizes
777 ; X 1is topological if and only if there exists a col-
lection & with the following properties: for any x€ X , -
the collection X, of all B € & with xe B 1is micro-
meric; if 97  is micromeric, x € N WL , then 77 mi-
nimizes :G;‘ .

3.16. Theoreg [cf. 1,3]. Let ¥ be a regular topologi-
cal merotopic space, and let X be a basically full-bounded
filter space. Then Y £ 4aa regular topological merotopic
space. )

Proof. By 3.12, Y% 1s a regular localized filter space.
By 3.15, we have only to prove that there exists a collection,
say @, with the property described (for a collection & )
in 3.15. For any full-bounded Tc¢ X and aw'open UecY,

-
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let F. , denote the set of all h € Y%  suck that
h{T]l ¢ U . Denote by ¢ the collection of all ilﬁ F‘?v“;
and, for any £ € ¥ % denote by o the collection
of all F € o containing f .

We are going to prove that every “’; is micromeric.
Let @ bve X -micromeric; since X is basically full-
bounded, we may assume that every M e 277 is full-bounded.
Since £[291) is micromeric and ¥ is topologiecal, there
exists a point y € ¥ such that, for every neighborhood
U of y, there is a set M € 72l with £[M]lec V=1Int U,
Then Fn,v € g , Te FM,V
ves that .;rma is micromeric. Thus we have proved that

’ FM,V [¥] ¢ V . This pro-

aff' is micromeric.
Now let OL be a Y% _picromeric filter such that

-

f, & G whenever G € ¢ . Choose an arbitrary full-boun-
ded Tc X and a neighborhood U of £, [T]. It is suffi-
cient to show that there is a set G € ¢ contained in Fr,u'
Let 31 be an X -micromeric filter. Then @L29t] is mi-
cromeric and every non-void € (AT , G e , M€
€ %7 , intersects £, [ TJ] . It follows that there exists a
set M= M(227) € 772 and a set G = G(727) belonging to
@ such that G[MAn T]Jc U . Clearly, the sets M(#)An T
form a merotopic cover of T ., Since T is full-bounded, the-
re exist 7)3”...! 77¢,  such that ‘L:jq M@(Wt,) o T.
Put G¥= "01 G(@7,) . Then, clearly, ge G* implies
8LT] =2V g[M(WL) A TIc U, Thus, every g e G* belongs
to F, , + We have proved that ¢*c Frou G*¥e ¢4
3.17. Proposition. If a completely regular filter space
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I =(x, M) is not basically full-bounded, then the
space [ 0,11 X of its continuous mappings into the segment
[0,1] is not closure-~induced.

Proof. Suppose that, on the contrary, & = [ 0,11% is
a closure~induced space. Denote by T* the topology CR-in-
duced by M. Foranyxe X, put 2 (x) =0 ; let %
be a complete system of neighborhoods of the function 2%
in the space % . Since & 1is not full-bounded, there,
exists an X -micromeric %2 such that no M € #7 is
full-bounded. Since %) is & -micromeric, there exist
Vo, €1  end M, € WL such that V, [M,Jc [ 0,70 .

Let {ﬁ,a_l a € A} be a fundamental family for the me-
rotopy [ . Since X is completely regular, the family
{v*(#£,1}, where *[&,] consists of all 2*K , K €
€ &,  1s algo fundamental. Therefore, by 2.6, there exist
sets K, € A,  such that, for any choice of k(1),...
ey K(n) , N, -‘.'L?: o ST I8

Now, for any finite set Bc A , let PB denote the
set of the functions £ e [ 0,13%  such that £(x) =0
for x e Y%, £(x,) =1 for some x, € M, (x, de=
pending, of course, on B ); since M, -a‘UB‘:"X“#D , 1t is
clear that no ¥, 1is void. It is also clear that no F,
is contained in V, (since f[M_ J]c[O, % L for every
f eV, ). On the other hand, the system of all P, is mic-
romeric, because for any K qyseees Fpin) ,‘there is a
set F, and sets K .. € &“ﬁ:, with P, [ K I= (o) ,
i=1,..., n. This is a contradiction. Thus, [ 0,13% is
not closure-induced.
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