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Commentationes Mathematicae Universitatis Carolinae
6,2 (1965)

THE CONTINUUM FROBLEM AND POWERS OF ALEPHS
L. BUKOVSKf, Praha

Every cardinal is an aleph in a set theory with the
axiom of choice. In particular, x:” is an aleph Ry .
The reccurence formulas are well known for the calculatiog
of ., (The Hausdorff formula for 7  isolated, two farmu-
las by Tarski for 4 a limit ordinal, see (2,1)=(2,3)).The
formla (2,3) is based on a calculation of an infinite caprdi-
nal product, and therefore it is not possible to use it ge-
nerally for a calculation of xa. 4

The present paper contains an exact definition of the
notion of calculability. We introduce & continuum functon e
and describe its properties. A new property of the continuum
function is proved in theorem 3.2. We examine the calculabili-
ty of x,o (l.ee @ (x5 3) ) relative to 2 and other
functions.

Throughout this paper, we use the notation and defini-
tions introduced in [G]. We use two kinde of considerations:
mathematical and metamathematical. Therefore we use the sym=
bols: f,¢g, K,...,%,8,7,d,m0e,u,§ for mathematical
objects, and M, V, g ,y,..., m,m, A for metama-
thematical ones.

In the case of mathematical considerations, we work in
the set theory 2% of Godel (i.e. we use the axioms of
groups A-E). By |+ & we denote that ¢ is provable in

=*.
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§ 1. Calculable fupctions
Matadefinition 1.1 A normal formula ¢ is called an

of=formula iff there is a number (metamathematical) m such
that
— (31X) e (X)

= (X)(@(X)—> « X Fn OR & W (X)= 0, )

We say that 4 defines an ordinal m =-ary function.

An ordinal function is a constant of the theory X *
defined by an of-formula. To simplify the considerations we
glways apeak about an ordinal function instead of the formula
which defines the function. Thus, the expression “ let 4 be
an m -ary ordinal function" is an abbreviation for the expres-
sion "let ¢& be an of-formula which defines an m -ary fun-
ction £ ". The formula 4 (f) 4is an abbreviation for
(X)(p (X) =y (X)) .

Exagple: The of-formula ¢f (X)= X ={f}x On gefines
an l-ary ordinsl function Z. & (X)=.(x)(y)Kxyd)e
€eXa.yeOn&x=y+1)& X € 0n x On defines a func-
tion S . P is the function defined by 7.9 in [G], (,, C,
are functions: P ((,(x), Cy(x)) = ox .

i It is easy to find the formulas which define the follow-
ing functions:

U?(‘"«"““’n)” iy 1sism, n= 1,2,...

‘ 0 for « = f3 0 for o # f8
eq(x;3)=

1far & > B 1fa o =f3

cf («)- ; tor ax € K

sglx;B)=

A 1is the least [ for which « is confinal with @y
for o € Kl[ .
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Mptadefinition 1.2 The operation of composition associa-
tes with the ordinal functions f, (& ;.- <, ), f (X, e oK),

eoo fp(eyg,... &, ) the function

f(d17-'- xm> = fo ({1 (“'1,--' ‘m )1‘-' #,"_ (“77“‘ ﬁm )) .
The operation of' induction associates with the ordinal
functions F, (gyeer €y ), £ (K yeoer Oy )y FH (K i, ,,))

N C P ) the function defined in the following

m+2
way .
F(afd‘lr" “,n ) = ﬁ, (d‘l?"‘ “’In« )
fla+1,0 000 ay ) = Fylo, Flx, %, 00ty Yy Olyyeee By )

for o« € KI flX,Hyyeee Ky ) = *E, (f‘i’g ‘43 (f,f(f,"f.,,-“x,n)’
Aygore Ky Vg Kgyoon Ky ) o '
Remark: These operations are mefamathematical ones on of=-
formulas, e.g. for composition: if ¢, , &L, , - Py are of-
formulas (which define f,,¥,;--- f, ) then the formula

g (X)= XE 0:'4& (CIDXC IS (acm)((ac‘,,ac”... Ky > € X=
= (Xa)()(,,)... (Xp ) (B3,)... (B,) (g (X,) &... &g, (X,). —>

- <°La7ﬂ1;'-'/3,n) € Xo & (/3:,0\:",... Ky P € X & ...&

& By Kyyere Ry > € Xy ))
defines tne ordinal function + (composition of

LA P A
Exgmple: 5g(x) = sg (fa),U;(x)) is a composition
of s¢,¢¥, U: where f () = S(Z (x)).
Metadefinition 1.3 *) An ordinal function is called

calculable relative to the ordinal functions ky,... k, iff
it can be obtained by a fini‘. number of applications of com=-
position and induction beginning with the functions of the

following list:
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a kg, Kk,
) $,2,5¢,P,Cq,C,U", ix1,..m, m=1,2,..

1 2

Example: €9 ,5¢, «+/8, o x }f3 are calculable ™)
ordinal functions (ot + 43, o x 3 are drdinal summ and
product).

Definition 1.3 enables to demonstrate the calculability of
an ordinal function. But we cannot prove the uncalculability
of a function directly. The notion of an invariant function
and theorem 1.5 will be useful for this purpose.

A model of set theary is defined in[V1]. It is a meta-
concept (a pair of formulas). If M is a model of set theory
then the corresponding concepts of set theary in the model ]
are denoted by "™ " | In particular, if ¥ is an ordinal
function (i.e. ¢ is an of-formula which defines ¥ , then
#ﬂ‘is the corresponding function in model M).

If there is no danger of misunderstanding, we shall sim-
plify the notation.

" Metadefinition 1.4 Let . Kqj.-- Ky be ordimal func-
tions, q an of-formula. We say that ¢ defines a functon
{ invariant with respect to k4y:-. K, iff the following
implication holds:

If M is a weakly regular standart (see [V1]) model of
set theory for which there is a class F  with the properties

a) F]some’!m 0'7?’

B) (ecy)... (& V(kyyeos Ly € O —

(kg (hyyonn €y D) = k] (F (), F, ), ity
then b= (x,).., (x,)(ex,,... x, € On » F(f (ac,y.cnoc, = F (F(c(q),.,.Féce))).

A function is called invariant iff it is invariant with

respect to the empty sequence of functions.
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Example: It is easy to see that functions sg, U:, Z,5,
P, 4, C; are invariant.

Metatheorem 1,5 If £ is calculable relative to Kq,--- k, »
then £ 1s invariant with respect to K,,--- kn -

Proof: Let 7l be a model with properties of definition
l.4. Then F(0)= om, Fla+1)= Flx)+ 1™ , It suffices to
prove that a composition of functions invariant with respect to
Kyy:++ Kn has also this property and the same for induction
(as functions sg,U;,Z,S,P, C;y C, are invariant).
For composition:

FCf (f, (g, oy Yyeee By (g 50y, M) =

m
wf CF GG (g @ 1), v F Oy (yyene i W)= £, (F i )y
s F(oy M yere 4 CF (), een F e, M) .
. .m,.m ’
Now, we prove F(f:': ¢ N= %F“f (1), where f is a fun-

ction invariant with respect to kj,... k, -
B Let’\'llsden?te B = i‘&i’zf’(f)-’.['hua,feac—-)f(f)fﬂ'
Let 7€ "F(a). Then F-'M)ex and f(F'nN< B 1.

FOECF-"q = £M(q) ¢ F(B).
m :
Let 're"' On and nem Flx)— f”‘(q)zl 7 . For every
;eo:,We have F(f)emF(ac) therefore fm(F(f))sm'r
and f(§) s F™'(y) . It follows that Lm” £™(qr=F(p)-

eME)
The theorem follows immedliately.

Exagple: The function & defined by 8.57 (see [ G)) is not
invariant. By [ V2], there is a model V¥ such that the cardi-
nals of model A v (i,e« A -model constructed in V ) are

not absolute. It follows: X is not calculable. A
The function c¢f is not invariant: if F(x)= @, v ’
A

“17 * af (there is such & model V ), then

% (Fan = 1%, cf"(Fx) = 07
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2 t _co a rtions
"The following aasertions *) are well known:

Rp _ ¥
(2.1) de =R TR .,
X X
(2.2) « € kyp & B <cfle). —> Xy =f£v\'f

(2,3) If o = Am T, , T, is an increasing sequence,
feay f f
&« € K then i o T &
I oo them X% 0= few, T}
The proof of the following lemma is trivial:

Lemmg 2,1 Let 'r:g be an increasing sequence, o =
=Ukm 7, .If @, is a regular cardinal, then eflx)= f3-
;G“’A f .

In this paragraph, a function is always a class f for

which

EFnOn &W(@HF)s On .
Definition 2,2 Let ¥ ©be a non-decreasing function,
X g 0n. We gsay that f has a gap on X 1iff there is
& € X such that (f(x)+ 1—41:-5-1)/7.,KE + 0 ; iees the-
re is B € KI[ , A< B Ef(x). G(f; X)={ok;(E)+1-
~d+1)nKp#0ba € X{ is called the class of gaps of function
¥ on .X.If G(+; On) =10, we say that f has no gap.
We say that ¥ is almost constant on X iff the ordi-
nal type of W (# M X ) is not confinal with the type of X.
Lemme 2.3 Let ¥ be a non-decreasing function for
which: f € O0n — f({)=2§. Let f be almost constant
on « € Kp . Then

~

a) the typ of G (f; &« ) 4is confinal with o (and
hes 2 gap on o ) ;

b) there is f € « such that f (§,) = f(7)
foreveryneoc,’zafa'
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Proof: There is f3 € o and a function
g: glsomg o B, W(fPMea ). By assumptions,

confinal with /3.

of 1is not

a) Let us suppose: ; € A& > 'F(f) €0 i.es W(fPx)e

€ o« . A contradiction (o = ff‘//’ln g (¢)) follows from

-F(f)}f . Tence, there is § € o and £ (§,)> « -
(-]
. -f, is confinal with « and - §, & G (f; <),
b) Let us suppose: (f)(fsx—»(:—!q)(yeoc&géfl&#(f)G
ef(n))) . e denote h ({) the least 7 far which g(f) =

=f(% )., h is a non-decreasing function and D (h)= B &

& W(h)e ot ., For every é' € & there is the least 7% >f

such that £ (§) € £ (1) . Thus, h(g'(F(1)) = 7.
therefore 4{m h (f) = o
fer

q.e.d.

and

which is a contradiction.

. The continuum funct
Let &, denote the following of-formula
Xs OnxOn&(ac)(/&)((aC/.?)eX-Z o X

The function 9¢ defined by A is called a continuum

function.
The generalized continuum hypothesis is equivalent to
(x)(se(x)=oC + 1)
. Lemma 3.1. a) («) (%€ (x)> o)
b) (xX)(BIx s3> (x)& 2 (B3N
e) (x)(ok < cf(9e (x))) .
Proof is trivial: a) is Cantor theorem, b) follows from defi-
nitiop and ¢) from Konig inequality.
Theorem 3.2 Let o¢ be a limit ordinal, ef(a) # &< -

If %¢ 1is almost constant on o then there is an f, € &K
such that e ()= se (§,)
- 187 -



Proof: Let f, be the least ordinal for which
©(f,) >« and f,efex >oe(f Ymoe(f ). Its exis-
tence follows from lemma 2.3 b).

a) Let o« < @, . We denote ¢, an ordinal:
f1>f°,§1¢4,, xf‘ »card o . Then

x o
Keepp €2 = B Y nz"s(zf'>°°“‘°°=

fccc
Fpoe et X K Re
=2 = 2 .
b) Let o = @, @ is singular. There is < o«

and an increasing sequence 7 for which &) =;,‘a;¢;» w,,f .
Let f4 be an ordinal: é; € x, ée ﬁ., Be 51 . We may

suppose ‘a} > ;1 for { € wy -

Then
= ~
b Na ey ™Y _ N
ey 2762 =200 T2
. Ry ~ Ry N
= (xu(;") ) A = g ‘1 z ;1 = 2 ;. . gee.d.
Theorem 3.3 Let o« be a limit ordinal. If 2¢ 1is not

.almost constant on o then 2e (o) > m 3¢ (f) .
fex

‘Broof: We define f, £Fn « in the following way:
: f(f) denotes the least 7 & «  such that
#(f)<2e (7).
" The existenca of such a function follows from the fact that
the typ of W(se Px) 1is confinal with « . It is easy to

see that $< f (f) The equality fZ 8‘, -’Z "‘F(f) and

" the Konig inequality imply: s
3

-z =

Ry =3 R < TT & =
f'::”(‘, bex s () fex RFCED
= 28‘ = sn(‘) . Q.e.d
Theorems 3.1 - 3.3 give necessary conditions for function

#¢ . The function 9€ is defined by a cardinal operation, We
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are mterested in its calculability and relation to ordinal

opera:t_iona_.\l‘{xis question is solved by

Metatheorem 3.4 The continuum function is not calculab-
le relative to X, cf .

Proof: By [V2], there is a model ¥ with the following
properties:
®, * 0
2°=%,,2 aR ; fora >0 hnolds in V ,
the cardinals of A -model constructed in V
are absolute, c¢f is absolute.

Let F be the identity function defined on class On’
of model V -

Then: a
© () (F (W) = @pig) )

() (cf(x) = cFiCF(e M)
bat F Coe (0N = 24 (FCOD
% (0)=2, 9°CF(0) = 1 oerything in © -

Thus, 3¢ is not invariant with respect to « , ¢f  and

therefore, is not calculable relative to & , cf. Geeod.

§ 4. The function (&
Let ¢, (X)  denote the formule

Xg 3 .
()(PI(P)[Crecfde X=Re =Ry 1&Xs0n o

D is an of-formula. Let (% denote the corresponding
ordinal function.

The following properties of (4 are almost triviali
(4.1) o = B —> (ot B)= 2e ()

(402) & >R > & & « (x; 3) < e ()
(4.3) @ (k +1;8)= Mu{(u(ac-,ﬂ);ac-&4}

We shall use the following notations:
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Ix)=fz.(Be Klr v/3=0)&/3soc&('r)(r>/$&1'eKI.—?acer),

P () is the least B € @, for which l(x)+B =cr;if
*—

f 1is an ordinal function, + (et) is the least 5 such

that £ () 2 o« .

The following lemma is an immediate consequence of these
notations:

Lome 4.1 ®) fe GC(f;q)= (33N Bekphpens FBIcE<s),
b) % ()€ x,
¢) s has no gap on On = (B)(fe Ky=>3(B)=/3).
By induction, (4.3) implies
Lempe 4,2 a) (w (x; B3)= Max{ (1(x); BYs;e?
B) B> 1) w(x;B)=Max{foe(B);xf -
Using this lemma, the calculation of (& (¢; 8) redu-
ces to the calculation of (w(ax; ) for o limit. For o
limit, the calculation of o (ec; 3) 1is more complicated.
Theorem 4.3 If o € Ky u{0f, 3 (X) = oL ,  then
a) cf(ads Be€ax— wlx;B)=3e(x),
b) Bcef(x) > u(x; )= -

Proof: a) Let otf be an increasing sequence,&m o, = L.
Fe% e

We define a function f from <, () into @ s
. let #(0) be the least § for which 2e (a,) < o
‘Let us suppose that f is defined for de 7 ( € Dt ).
If 3¢ (an) > OC;"Z for every ‘f € Docgy
then 9 (L9 ) > o - contraedicts with 2¢ (<) = & . If
for every f € A, 2(kn) € < , there is an d'e 7
E < #(&) | then m &« = of — & contradiction.

§e £C8)
Thus, there is é‘ such that ge (acn) % o(; and ; > £ (")

for every J € 7 . (%) is the least f with these
- 190 -



properties. )
{f 4s an one-to-one function from 6’c,¢ ) into it-

)
self and ac”‘,, > 2 (acf) . Now, if ‘,JL‘“‘,naf.‘.) ?

then we denote by g (X) the function Y defined by
X(n) tor { = £ 1)
0 tor f ¢ wWCf ) -
g isan one-to-one function into IT ed B thus
€% ¢ (x)
Z f s IT L 9% .

Y(f) =

f‘ L o) Sy F
Using (2.3), we have § =
X, f <
x‘x“m“ TT-*«; > T2 = 2 =2

and the theorem tollm 1nmedinte1y.

» »
B) % By = a sz:(zf)" s ((hH"%
| fex S pex “aljes
.A‘Zf<‘2;‘ X‘ . Qee.d.

Theorem 4.4 If o« € KI,;Z(ac.)<oc, then
Q) AIsB<cx > (xsB)=2e (B),
b) e#(ac)‘/l<§(ac)—->oc<(u,(ac,ﬂ)‘9¢(£(cc)).

*“p
Peeas: o) 2P s nte (2R :
c#&t)
b) Konig uequauty implies W, < & But
Refta) um s "‘ﬁw
R e 0 "8 (2 ul =X o 9) Qoeods

The suthor does not know how to prove a stronger theorem
than 4.4 b) and therefore, he cannot prove the calculability
of the function (. relative to cf, o¢ , but only a weaker
result

Theorem 4.5 In the set theary 3 © with the axiom
(2)(x € Ky — 3¢(t)= &) the function w 1is calculable
relative to o€, cf.

Proof: We define
=191 -



m(0s 3) = 9e(f3)
m(x+1; f)=Maxd{m(x; 3); x + 1¢
L e€Kp:m(x; )= sg(B+1;x)x 2 (B) +sg(ex; ) x

| x[sg(p+1; ef () x ve (x)+ sg (cf(x); B)xex].

It is easy to see that M is calculable relative to 2e, ef.
Using the axiom (x)(x € Kp —» ge (X)=cx ) and theorem
4,3, we can prove the equality
(@)(B)(Mm(a; B)= wu(x; 3)) . Qee.de

Bagark: The essumption (x)(x €& Ky —» € () = )
(i.e. 2¢ has no gap) is consistent with = * it holds e.g.
in the Godel’s A~ model. It follows from [ V2], that the
assumption is independant.

There is a model V  where

=, R, ¥, Xay, 3 . 4
2 =x,,2 =2 ...=2 a3, 2-§“for x >»a, + 1)

o a?
° o4+
N“,' = &a;. 41 ° «
Qenerally, can prove neither .R%' < xq iz nor
&w: = xw. 2 The positive solution of the following pro—-
blem implies the non-calculability of g relative to 2¢, ef.
Eroblem:
_ There are two models V; , V, and amapping F be-
] 2
twen On , On satisfying the conditions of definifion

1.4 *) (mtn K,= 9, Kk, = c¢f ) and the following ones:
(i) e()=1, %(ﬁ)cﬁ%*z for e x ¢, + 1,
%) =& +1 for « > @, , everything in Vs and

v,
2 2,
(11) X " Raez in V, ,

w
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§ 5, The functiop I7

We define a function 4 in following way:
X
(€))L () = 3= 2 A e, 1.

It has been conjectured by P.Vop&nka that the calculation of

® ®
.»ﬁ"’, 2'#  can be reduced to Jr .

In this paragraph, we prove this assumption, namely, we
prove that (. and se are calculable relative to s, ef .
We define rr*(ac)=.17-(oc4.1). N
Theorem 5.1 a) s7r(x) = s¢ () for oc regular (i.e.
x e cf(x)).
b) o€ < JT () .
c) ef(x)<eds (r(x)).
a) 7r™ is non - decreasing .
Proof: a) If o is regular, then ¢f (x)=cf (@), ) =
and Ir(£) = (u,(o(.;oC)z e (X ).
b) For o« regular, the Cantor theorem implies

b), for « singular, it follows from Konig inequality.

Roewy | Xefior, Retiao) Ref ()
e) X = (R )

() 3 = ¥y < Frew

hence
Reey < Rog (ar (<)

d) We have or¥(x)=d2e(x+1)g ¢ B+ 1)= %)

for /3 > K . qee.de

Theorem 5,2 Let of be a limit ordinal.

a) If 7* is almost constant on x, ef(x) * o ,
then there 1s { € o« , £ € K; such that ee(«) =

-] (-]

nﬂr(;’)z ;w ”(ﬁ)n

b) If or* is not almost constant on o, then 2¢ («) =

= W(m W(ﬁ))-

Proof: a) If sr* is almost constant on of , then, by lemma
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2.3, there 18 f, €« : FX(L )=n*(§ ) for f, € feox.
The theorem follows from thegrem 3.2 .
b) Let 8 be ef(x). As Jr* 1is not almost constant

on « , there is a sequence 'z.--f e Kg with the properties:
.ﬂ'(’tf ) is increasing,
= &K .
g L § ay ‘
R ,
‘ - L A T, - TT x L
Then 2 2 %% = ;ZT%Z f o= feay T Crp)

Using the facts: T ('t'; ) is increasing, )y is regu-
ler, lemma 2.1 implies cf (dm T (2, )= /3 . Then, by
feay §

(2.3), it holds

TI' R» =X, 4 .
f“, Y xzm vr('r‘,) ”;f‘ﬁa',‘, et » Gee.d.

Corollary 5.3 If /4" is a strongly inaccessible car-
dinal then rr(/-H-:r(!{:n:; TCE)) , te. ppe t% cf).

Ir ,4" is a weakly inaccessible cardinal, JT* 1is not almost
constant on /\" , then 7 (P) = JT(»C:"",‘;F mig) -

Theorem 5.4 If B <cf(x), o € Ky , then
(“(9()/3)-' ;l:/rz(u(f;/!)-

xRy *p
Erogf: By (2.2), & -FZ‘ .Rf .

b L
We define: s (0) = 0, s(q)z'a"s&f'}q X far 7 £ o
It holds s (1) = @ (0 A,
5(744)- Max{s(q);(uf"],,'ﬂ)}= «@;A)

R
I} X
becsuse of '*f € 8,1 and 07 £ x.l” « It suffices to pro~-

ve s(ol)-t s(§) for % limit,
Let im s (§) = o . But s () > s({) tor f"l i.e.
s({)hd’ Ir fcq,then s(§+4)>§ s({-&'r)sd‘
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Therefore: ) £ d. Thus, we have

s
N“,l’ e;ﬁ 8‘. § 3‘.’¥ = xd- . qeeede
Theorep 5.5 let o« € Ky, cflx) & B < « .
a) If . (§; B) (as a function of f ) is almost con-
stant on & , then there is f. € ¢  such that
@ &5 Bzl ), 1. @ (x5 /8)= ;?zvm(f; A -
b) If & (f 5 87 is not almost constant on ot , then
(u.(d,/&)a-ﬂ' ({::" fead (f; BsN:

Proof: a) Let € =vm 'z'; .Let ;, be an ordinal choosen

| L L7
by lemma 2.3 . We may suppose rf > {o for every
€ ) + Then
ef (x) *y Ry Rep) R,
x A T ®a = (Nr ) = X
Lod fedetey € 7 Z

° 1,
b) There is a sequence _‘b’; with the following pro;:oer-
ties:

L= bm T, @@
f‘a"cf(«) pf ®,
“ ‘“’cf(d)?; § €% %

»
It follows from (2.3) that T Ry aym s, @) .
§e iy 0‘("f'ﬂ’ )ion‘a [‘P;;/l)

-//37 is increasing, 'L} € KI . Then

By lemma 2.1, cf(«)=cf (bom (‘t},ﬂ)). Using
€ %ty

;’f‘i"‘ o (65/3)-:%'; (u(‘?/i),we have (zc (x;3)= ﬂ'(&b’pfg‘(f}/}».
“ea Qecede
Theorem 5.6 The functions @€, & are calculable rela-
tive to 4T, ef.
Proof: We define two functions:
h(0) =0
hix +1)= h (x) + sg (o *(x + 4);7r*(a: »
L€ Ky: h(x) = ;lf':' h(g)

and
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k(0) =m CO)

K(et+1)a Tr(x + 1)
K eKp: k(a)m (x)x eq (ef(x); )i sg (x; cf@NX
x [eq (ef(x);efCh(x))) x lo;g m(E )+ 68 (eq (ef(x) s

et (h (x))) x o (géan. g Nl
Using theorem 5.2, we can prove (oc)(2e () = K(«)). Thus,

8¢ 18 calculable relative to I, cf.

Now, we define a function € in such a way that, for 4
fixed, C, (t (x; /3)) will be the typ of W (u Met ),
G (t(x;8)) willbe o (xy B) -

Let © be the function defined as follows:

+(0yB)= P(0;0¢ (A

L+ 1) B) = PCC, (t(a; B4 sg (o 415 C(t @3N

Max {CyCt(a; 3)); & + 1%)

«eKp: t(x;)=P(S;E)
‘where

= s&m C,CtC; BN, ¥ = ;&m CCtCg; BN, €=
wsg(Bi1;x) a2 (B)+ Sg(xj BIx[3g (efix); BIRY+
Fsgp+1;cf(x))x (eglef(d); ef (o)) x (¥4 5g (eqlef () e Mx ¥ )]
t is calculable relative to 8¢, or, ¢f . Using theorems
S5¢4, 5.5, we can prove (X)(B)(t (x;3)= @ (x; [3)),thus
(@ is calculable relative to 22, o, ef.

Theorer follows immediately.

w: ‘ . q.e.d.
5 The manuscript of this paper had been written befare the
" suthor Imew the Eeston’s paper [E], where on the pages 2 and 3,
there is a conjecture that the conditions a) - ¢) of lemma 3.1
"mre sufficient for the continuum function. The conjecture is

false as there is a function satisfying these conditions, which
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does not fulfil the assertion of 1.:heorem 3.2,
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p.183: *)The metadefinition determinstes a system of of-formu-
las.

p. 184: *A function is called calculsble iff it is calculable
relative to the empty sequence of functions.

P-186: *X2.1) is Hausdorff reccurence formula, (2.2) amd (2,3)
are the reccurence formulas by Tarski.

p 192: ".e. Vz is a weakly regular standart model in V,
and the conditions a) b) are relativized to V, -
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