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Commentationea Mathematicae Univeraitatis Carolinae 

6, 2 (1965) 

HOMOLOGICAL FIXED POIKT THEOREMS III. 

Otomar HXJSK, Praha 

Theorem 2 of [4] asserts the presence of a fixed point 

for some one of the iterates «£, f *,..., f*1, of any contiriu-

cus map i : K —* X f under rather strict restrictions on X 

(non-oddness,l.c.; one may then take m » £ (X ) ). In 

some cases it may be useful to weaken the conditions on X 

but restrict the maps f considered* Indeed, some theore ma 

of this type are already known: assume X triangulable; if 

\(X) + 0 and f ; X-»X is nomotopic to the identity 

map, then i has a fixed point (a corollary to the Hopf-litf-

schetz fixed poijit theorem); or, more generally, if f J X - » X 

is homotopic to a retraction X —• Y with ^ (V ) + 0 f 

then again «f has a fixed point (theorem 5 in [3])» The main 

result of this paper, theorem 4, is another result of thia 

type. In particular, it is shown that if f: X -> X ia homo-* 

loguous to a homeomorphism and \ (X) * 0 } then aome ite­

rate -f has a fixed point (and an upper bound to $ ia gi­

ven: corollary 5). 

The terminology and notation of [3] are preserved. In par­

ticular, "group* means an abelian group (? with fixed inte-^ 

grity domain J as left operators, and with finite rank over 

J (this rank will now be denoted by JT (& ) ). A "group 

sequence" is a sequence { \ i of such groups with ^^fc 

again of finite rank over J * The Buler characteristic of 

S a ( ^ ( is, 6e ia [3], defined as 
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%(G) m Z(-1)*'fr(<Tt) . 

For <fi, j> fiC we refer to definitions 1 to 3 in [3J. It 

aeema useful to introduce the following notation 

PtfiatUftll t- For a group ae que nee G « {G% / set 

ae f £ ) * Z ^ r ^ ) . 

Obtioualy K CG) * rr CTT&%)$*CG) * 0 , and 9tCG) ~ 0 i f f 

a l l G% are periodic; % (G ) * 9t (G)} with equality i f f 

a l l odd-indexed G1% + i are periodic; *e (&) - £ (& ) are 

both even integere. 

For triangulable space* X ( i . e . topological spaces 

with a f in i t e triangulation), the homology sequence i s deno­

ted by HM (X)t*{H% (X)} , the g-tt Betti number by 

tt^CX) • rrO^ rX)); +t i H^ )^Hm (Xz ) denotes the homo-

morphiam induced by a continuous 4 • X1 —¥ Xx ; and we 

define 
% « > - ^ r H . | [ f X » - Z f - 0 1 ^ L f X > # KCX)-*C%CX))*ZsrtCM. 

In particular, ^fX)-» *€. CX) i f f X la non-odd (cf« the 

definit ion in f4 , p*87J). (As another example, for compact 

2-mnifolda X, *€(*)- ^ (X) « -fr x (genua of A . ) 
T i l 1 ? & f i & -+ G la a homomorphiam of a group 

fr»then X*, 

i«sX) - £*„-, T ^ A X * 

with /a - A O * * *m* * *r(G)} and O f ^ 4 in a root f i e ld 

over J . i f -f : (r -+ G i s a honomorphism of a group ae-

quenoe G , then 

(1) <& c*i A > - -Tk.« " 7 - ^ A . 

with dist inct * * + 0 > int .g«rs « ^ and 

K *•. - - \(<mi) > *• * *r<?:> * 
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(Proof*) In the definition of ft (• ) aa 

>fv C+ -,A) - cUt f l - A J r U ) 

obviously 
cUfct*. -ft - *a/n-fc B^A - * * " » * A - sr Ctm f • 

Hence the decompoaition of -ft ^• > In i ta root f i e l d Jp, over 

J may be written aa (cf.proof of theorem 2 in [ 3 ] ; note that 
1tC4} 0) = dbtf I « A) 

with 0 + A^ e J f , /n . jrftVnf) . T h e n ^mmmJt /^ yieide 

the f i r s t assertion. 

The second then results on applying the f i r s t to 

^ f f ^ j . z r - i )%j c+%; x) 
with, say, 

the integers lt^ are then obtained by col lecting equal sua-

manda. This concludes the proof. 

Lgmjiy- j - Let -f $ fr ~-> df be a homomorphiam of a group s e ­

quence Gr 1 and l e t 
j t t f f , A ) ~ * . J ^ + 1 ) A A 

£e the formal power-series expansion aa in [ 3 , lemma 4J. If 

\ C4mf) 4* 0 t h e n J f - f s ) 4i 0 for some s with 

A * 5 ss *t* Cfr) . 

CProof.) Prom ( l ) there followa eaaily 

with n, Kj^ , A ^ as indicated there. 

Now consider J Ct*) * 0, 1 * * & <n , as a system of l inear 

equations in unknowns 4 ^ ; the determinant A of the 

system i s then readily recognised aa 
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* *nr, &jii x v(... Aji".) 
with V the Vandermonde determinant • Then li 4 d since 

the ^ J 8 are distinct and non-zero; hence all ^ • ^ 

and in particular 

0 * Z * * ^ - ~ % (i*n#) • 

This contradicts an assumption, and proves the assertion* 

Remarks. Lemma 1 is obviously a result on the structure 

of the rational function <$ti ; it implies, e.g., that 

Jim, X <Ul (*, A ) . - * CVm-f) . 

interpreting the limit as -£ gti C-t- ; j ) at A » 0 • 

In particular, ̂  Ct \ X) 4- 0 if \ (vmVl + 0 , so 

that some 3 (is) + Q ; lemma 3 then gives more information 

concerning this integer 5 

(Obviously the proof of lemma 2 is an improved version of that 

used in [3, corollary 2J and [4, theorem 2J.) These two lemmas 

form the algebraic apparatus of the following theorem. 

Theorem 4« Let X ; Y be triangulable spaces, %(Y)4* 

-f» 0 and let i2 > £- he continuous maps with 

* < x -> y ; 2 • y - * x , 

(2) *£* onto ; MMJL <j-x -* 0 m 

Then the map $f * X-> X has some iterate (£/ ) s with a 

fixed point, and 4 * s ^ * e f y > -

(Proof •) There is 

im (ft)* m 9* (** +*) ~ "" &* ~ H* cy) 
by assumption on f, , ̂  -, hence 

%(Un (9t)* ) - % (Y) + 0 . 

Our assertion then follows immediately from lemma 2 and the 

Hopf-Lefachetz theorem (applied to (g.* ) 5 ; or from f3, 

theorem 5J with Y » 0 ) . 
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fffffrUffgy S» **t X be triangulable with % (X ) # 0 , 

and l e t -f ; X-*r X be homotopic (or homologuous) to a homeo-

marphism of X (or, more generally, assume that f* i s e i ­

ther 1 - 1 or maps onto). Then some i terate f * , 1 * 8 -6 

4 9t ( X ) , has a fixed point. 

(Proof: for the second map take the identity of X •) 

Remark. Possibly i t i s not apparent that corollary to 

theorem 5 [ 3 , p.28j i s a special case of the preceding asser­

t ion. Indeed, l e t X ~ S ** f so that \CX) m <H CX)m 2 y and 

l e t f : 5 **—* 5 be continuous. Now either D C4) + 0*9 

and i has a f ixed point by the Hopf-Lefschetz theorem. Or 

J (i ) m 0 > but then degree *f •» - 1 and f^ i s an iao-

morphism, so that , by corollary 5, f has a fixed point* 

There i s an obvious obstacle to direct application of 

theorem 4 : i t i s d i f f i cu l t to verify conditions (2) (except 

for homeomorphisms, where this i s t r i v i a l l y true; however, 

see the preceding remark). To I l lustrate , consider maps 

E —*3 • Evidently, there are even local homeomorphisms onto; 

however, no *f ; E - * 5 has +# mapping onto, nor doea 

any 9 : S —* E have i a ^ - 0 (merely consider 

the homology groups). We shall now exhibit a class of naps sa­

tisfying (2) . 

Definition 6. Given a category, a morphism i i s termed 

* -invertlble i f -f-f ' » 4 ; a unit morphism, for some 

(associated) morphism l ' ; the dual concept i s / - invert l -

Thus, i f ff* 1 , then •£ i s * -invert iMe and f 

I -invertlble* As an example in the category of topological 

spaces, an inclusion map Y c X i s I -invertlble i f f Y 

i s a retract of X , Bach invertlble morphism i s /*- and 
- 161 -



,£-invertible; conversely, an ft - and Z -invertib> morphism 
(or, more generally, an ft -invertible monomorphism) is inver-
tible. The composition of /t -invertibles is >t -invertible, so 
that, in particular, a morphism equivalent to an #-invertible 
is itself /c -invertible* 

Prom 44* * 4 it follows that 4 is epimorphic; more ge­
nerally, for every admiasible covariant functor F , F (4 > is 
ft -invertible and hence epimorphic. In particular, on taking 
for F the homology functor, 

Remark 7. In the category of triangulable spaces, if 4 
is i -invertible and g. L -invertible, then 4# maps onto 
and M*A, <fr* • 0 *• 

It is now seen that our invertibility conditions are rat-
* her brutal: we only need (2), but use a. condition entirely in­
dependent of the structure of the homology functor. The follo­
wing condition characterises H, -invertible maps of compact 
topological spaces. 

ItejgnsJS* Let 4 : X -> Y be a continuous map of Haus-
dorff spaces. If 4 is ft -invertible, there exists in X 
a closed section to the relation «fjc -» 4 *f. y if X is 
compact, this latter condition is also sufficient. 

(Proof.) Let 44' » idy with 41 * Y-* X continuous. 
Then 4tm4' is easily shown to be a sectionfl, p.78J to the 
relation -fJC « 4& in X j it is readily verified 
that im V is the set of fixed points of 44* * X ~> X , 
and hence closed if X is separated* 

Conversely, let F be a compact section to the indica­
ted relation; *then one may prove directly that 4' « C4 IF )" ; 
i Y -> X is single-valued and continuous, and obviously 
then #*' «• Idy • 

Proposition 9. Let X , Y be triangulable; \(Y) + 0} 
let 4 t X -* Y be ft -invertible, g, ', Y -> X i -inver­
tible* Then, for some 5 with 4 * s & aeCY), (q4 )* has 
a fixed point. 
(Proof; lemma 7 and theorem 4.) 

Corollary 10. Let X, Y be triangulable, \ CV) ± 0 , 
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and l e t 41 £ * X-> Y be ft - invertiblej then there exist 

points { **.** i i P, ^ ' s f i K C>9, auch that 

**lt - 9**+< Ci **>**), * * « - » ^ -

(Proof. Let £ $ • ' « * ^ y > apply prop. 9, obtaining a fixed 

point * f of C '̂-f ) s ; define ^ ^ « 3 ' * * * , •* 

In particular, for 3 «•• 1 there results a "coincidence 

theorem" as suggested in [4 , p.91-): 

Corollary 11. If 4, (j : X ~> Y are ft - invert ible , 

X j y triangulable and V homologically point-like (e .g . 

y - E " * ) , then f x » 9.X for some *X e X * 

Corollary 12. If X i s triangulable, 4 * X -» Y * - i n -

vertible,with Y a retract of X and \(Y)<¥ 0 , then so­

me iterate 4 has a fixed point, 4 * 5 -* s* (Y) * 

(Proof: apply prop. 9 with %• m 2 : Ye X the inclusion map, 

>£ - invertible since / i s a retract; obvious]? j (4 Cx)) « 

Remark 23. In assertions 9-12, the maps 4 f £» may be 

replaced by homotopic (or homologuous) maps. 

Further applications of theorem 4 wi l l be given in a forth­

coming paper on flows. 

CORRECTIONS to preceding papers. The second displayed 

formula in corollary l , [3 ,p*20j , should end with . . . * - rank Q. 

In [ 3 , P»29], 11th l ine from below, replace g : X - H by g: X-* 

In C4, p.89j , 10th l ine from below, replace ^(T) by 

^ (X); two l ines further down, the upper limit of summation 

should read ^(X) - 1 . On p. 91, l ines 2-3 from above, the 

sentence "If f i t s e l f . . . holds" should be deleted complete^* 
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