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HOMOLOGICAL FPIXED POINT THEORENS III.

Otomar HAJEK, Praha

Theorem 2 of [4] asserts the presence of a fixed point
for some one of the iterates £, f1,..., f™ _of any continu-
ous map f : X— X |, under rather strict restrictions on X
(non-oddness,l.c.; one may then take m = gy (X)) Jo In
some cases it may be useful to weaken the conditions om X
but restrict the maps £ considered. Indeed, some theore-'
of this type are already known: assume X triangulable; if
1(X) % 0 and f : XX 1is homotopic to the identity
map, then f has a fixed point (a corollary to the Hopf-Lef-
schetz fixed point theorem); or, more gemerally, if f: X— X
is homotopic to & retraction X — Y  with X(Y) =+ 0,
then again f has a fixed point (theorem 6 in [3]). The main
1result of this paper, theorem 4, is another result of this v
type. In particular, it is shown that if f: X — X 4is homo~
loguous to a homeomorphism and X (X) #* 0 , then some ite-
rate -F‘ has a fixed point (and an upper bound to § 1is gi~
ven: corollary 5).

The terminology and notation of (3] are preserved. In par- -
ticular, "group" means an abelian group G with fixe@ inte-:
grity domein J as left operators, and with finite rank over
J (this rank will now be denoted by v (G) }. A "group
sequence” is a sequence { G, { of such groups with T1Gg
again of finite ramk over J . The Euler characteristic of

G = «(G’Z} is, as in [3], defined as
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x (6) «E-1nc6).

Yor n, 7 gk we refer to definitions 1 to 3 in [3]. It
seenms useful to introduce the following notation

Definition 1. For & group sequence G = {Gg 7 set

% (G)= Zm(6).
Obviously s (G) = m(TGy),ee(6)2 0, and w (G) = 0 iff
all Gy are periodic; 7y (G) € (G), with equality iff
all odd-indexed Gz,,s are periodic; s (G)* 2(G6) are
. both even integers.

For triangulable spaces X (i.e. topological spaces
with a finite triangulation), the homology sequence is deno-
ted by Hy (X)a{H (X)}, the q-th Betti number by
ri(X)- n’(H, (X)); $y :H (X)>H (X, ) denotes the homo-
morphism induced by a contimuous £ : X, —» Xl ; and we
define

100 = x (H (X)) = Z (- 10¥a7, (X), 26(X) = 22 (H (XD=X 7, (D).
In particular, jx(X)= 9¢(X) 1ff X 1s non-oad (cf. the
definition in [4 , p.87]). (As another oxample for compact
2-nnifold- X, (X))~ 3(X)= 4 x (genus of X .)

lama 2. It £: G —>»G 1aaho-o-orphianofagroup
G, then ” A

4(f;A) = zhﬂ T-AX,
with m « xank vmf% 7(G) and 0 + Ap 1in a root field
over J. It £: GG s @ homomorphism of a group Se-

" quencs G, then
. m g
w Qo C£;2) = 24 T34,

with Aiatinct A“ + 0, integers 1, and
-n . ) .
z‘m‘kn—{(”ﬂf), m & 9 (G)

-
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(Proof.) In the defimition of 11 () as
£ (452) = det (I-2D"A)
obviously
degue o = ramk DA = xank A = gr (im f -
Hence the decomposition of i (- ) in its root field Jp over

J may be written as (cf.proof of theorem 2 in [ 3]; note that
p(fy0)=det I=1)

p AV =T (1-22,) .
with 0 % Ay € J, ) m = v (émf) . Then j--%’ /fe yields
the first assertion.

The second then results on applying the first to

gl ($, )= Z(-DY5 (2

with, say,

~y A
JChs2) = B o

he1 1_,‘11‘& ) '"'z 9 L

the integers "4, are then obtained by collecting equal sum-
mands. This concludes the proof.
Lemma 3. Let £3 G—> G be a homomorphism of a group se-
quence G , and let o
gli (45 A) ~ Z,J (4™
be the formal power-series expansion as in [3, lemma 4). If
X(imé) &£ 0  then J(#°) « 0 for some s with
1% s s ge (G). ’
(Proof.) From (1) there follows easily
I = Z" e A%

with m, x, , A, as indicated there.

Now consider J(f*)= 0, 16 s = mn , as a systen of linear
equations in unknowns XA, ; the determinant A of the
system is then readily recognised as
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. T2 = V02 ..)
with V  the Vandermonde determinart. Then A # 0  since
the .ﬁ.‘;a are distinct and non-zero; hence all 4, = 0
and in particular .
0= Z " n, = -7 (im#) .
This contradicts an assumption, and proves the assertion.
Remarks, Lemma 1 is obviously a result on the structure
of the rational function g€ ; it implies, e.g., that
Hm A gl 54,.5\)--7(1(%4) s
interpreting the limit as 3 g& (f; 3 ) at A= 0.
In particular, g& (f;2) # 0 1t x (vmt) & 0 , 8o
that some J(f%) % 0 ; lemma 3 then gives more information
concerning this integer s .
(Obviously the proof of lemma 2 is an improved version of that
used in [3, corollary 2] and [4, theorem 2].) These two lemmas
form the algebraic apparatus of the following thearem.
Theoren 4. Let X, Y be triangulable spaces, y (¥ )+
# 0 and let f,g be continuous maps with

‘F-'X“QY7 Q:Y""X P)

(2) f« onto , b gy = o .
Then the mep gf: X — X  has some iterate (gf )5  with a
fixed point, and 1 & s = 2¢ (¥). )

(Proof.) There is

im (§f)y = Gx (om ) = im g, = Hye (¥)

- by assumption on f, , G, 5 hence

" xlim (382 )= 1 (V) O .
Our assertion then follows immediately from lemma 2 and the
Hopf=Lefachetz theorem (ahplied to (g.f)’ ; or from [3,

theoren 5l with ¥ = # ),
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Copollary 5. Let X be triangulable with y (X) % 0,
and let £: X—> X be homotopic (or homologuous) to a homeo=
morphiem of X (or, more generally, assume that fy 18 ei-
ther 1 -1 or meps onto). Then some iterate %, 1 &s <
% 2¢ (X), has a fixed point.

(Proof: for the second map take the identity of X )
Remark. Possibly it is not apparent that corollary to
theorem 5 [3, p.28] is a special case of the preceding asser-
tion. Indeed, lot X = S2™ g0 thet 7 (X) = 2¢ (X)= 2 ; and
let f: 52"—-7 S%™ be continuous. Now either J (f) # 0,

and ¥ has a fixed point by the Hopf-Lefschetz theorem. Or
J(f) = 0; but then degree f = — 1  and f, 1is an iso-
morphism, so that, by corollary 5, £2 has a fixed point.

There is an obvious obstacle to direct application of 4
theorem 4 : it is difficult to verify conditions (2) (except
for homeomorphisms, where this is‘trivially true; however,
see the preceding remark). To illustrate, consider maps
E1—754 . Bvidently, there are even local homsomorphisms onto;
however, no + : E'"—> 5" has f« mapping onto, nor does
any g: s’ E’ have kv g, = 0 (merely consider
the homology groups). We shall now exhibit a class of maps sa=-
tisfying (2).

Definition 6. Given a category, a morphism \f- is termed -
n -invertible if ff‘= 1 , & unit morphism, for some
@asociated) morphism ' ; the dual concept is £ -igverti~-
bility.

Thus, 1 ff'= 1, then £ 1s 4 -invertibleam f'

{ =-invertible. As an example in the category of topological
spaces, an inclusion map Y ¢ X is £ -invertibls iff Y

is a retract of X ., Each invertible morphism is #£- and
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£ -invertible; conversely, en A ~ and £ -invertible morphism
(or, more generally, an A —=invertible monomorphism) is inver-
tible. The composition of A =invertibles is £ =-invertible, so
that, in particulsr, a morphism equivalent to an ~ -invertible
is itself A -invertible.

From ¢’= 4 it follows that ¥ 1is epimorphic; more ge-
nerally, for every admissible covariant functor F , F(f) 1is
& -invertible and hence epimorphic. In particular, on taking
for F the homology functor,

Remsrk 7. In the category of triangulable spaces, if +
is n ~invertible and g £ -invertible, then fy maps onto
and Ao Fx = 0.

It is now seen that our invertibility conditions are rat-

o her brutal: we only need (2), but use a condition entirely in-

dependent of the structure of the homology functor. The follo-
wing condition characterises 4 -invertible maps of compact
topological spaces.

Lemmg 8, Let f: X = VY be a continuous map of Haus-

dorff spaces., If f is &« -invertible, there exists in X
a closed section to the relation fx = fy ; if X is

compact, this latter condition is also sufficient.

(Proof.) Let {4/ = id, with f: Y= X continuous.
Then «m ¢ is easily shown to be a section[l, p.78] to the
relation {x = fy in X ; 4t is readily verified
that <m '  is the set of fixed points of f£': X = X ,
and hence closed if X is separated. .
Conversely, let F be a compact section to the indica-
ted relation; %hen one may prove directly that f’ = (f[F ) P
: Y>> X is single-~valued and'continuous, and obviously
then ¢#/ < id, .

Proposition 9. Let X , Y be triangulable, x (¥)+ 0;
let s X > Y ‘be n ~invertible, gt ¥ X £ -inver-
tible. Then, for some s with 14 s = se(y), (gf % has
a fixed point.

(Proof: lemma 7 and theorem 4.)
Corollary 10. Let X, Y be triangulable, x (Y) # 0,
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and let +,9°'X—>Y be « -invertible; then there exist
points {"‘4..}: in P, 14 s = s¢(Y), such that
fXg = gxnaq (15h<e), fxeg= 8% -

(Proof. Let 9¢'= <d, ; apply prop.9, obtaining a fixed
point X, of (g'#)° ; define X, = g'fxg o)

In particular, for 8 = 1 there results a "coincidence
theorem” as suggested in [4, p.91):

Corollary 11. If f,9: X > Y are a -invertible,
X, Y triangulable and Y homologically point-like (e.g.
Y = E™), then £x = gX for some X € X -

Corollary 12. If X 1is triangulable, f+ X ~» ¥ 4 =-in-
vertible,with ¥ a retract of X and g (Y)4 0, then so-
me iterate f° has a fixed point, 1% s < 2 (¥) -
(Proof: apply prop. 9 with g =4:¥c X the inclwion map,
A -invertible since Y is a retract; obviousy 5 (¥ (x)) =
= f(x) )

Reperk 15. In assertions 9-12, the maps +f, g may be
replaced by homotopic (or homologuous) maps.

Further applications of theorem 4 will be given in a forth-
coming paper on flows.

CORRECTIONS to preceding papers. The second displayed
formula in corollary 1,([3,p.20], should end with ... = - rank G.
In [3, p.29], 1lth line from below, replace g:Y—>Y by g&: X
-2 1.

In (4, p.89], 10th line from below, replace 2 (T) by
X (X); two lines further down, the upper limit of summation
should read 4 (X) -1 . On p.91, lines 2-3 from above the
sentence "If f itself ... holds" should be deleted complete¥y.
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