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A RIGID RELATION EXISTS ON ANY SET
P. VOPENKA, A. PULTR, Z. HEDRLIN, Praha

The aim of this note is to prove that, for any set X,
there exists a binary relation R c X = X such that the
identity transformation is the only mapping f: X — X
which the implication

‘XRy =» f(x)Rf(y)

‘for

holds. Moreover, we are ioing to show some consequences of
this assertion.

First, the definitions and notation.

Saying "a relation on a set X " we mean always a binary
relation, 1.e. a subset of X < X . Let R ( § , resp.)
be a relation onaset X ( Y , resp.). If £: XY eama

xRy =p F(X)SF(y) for all x, yeX ,
£ is called an RS -compatible mapping and we write
$:(X,RY>(Y,S5).
C(X,R) denotes the semigroup, under composition, of
all compatible mappings from ( X » R) 1into iteelf. (X,R)
is said to be rigid, if C (X , R) 1is trivial.

Using the above definitions our aim is to prove the head-
line.

The following assertion =~ denoted by & (=) , « a
cardinal-played an important role in a few theorems (see [1], ~

(2],(3],(41,(5],(6]): There exists a rigid ( X, R) such
that caxd X » u .
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F (« ) was proved in[4] for © less than the first
inaccessible cardinal. It follows from the result of the pre-
sent note that & («) holds for every cardinal «¢ . It
enables to omit unpleasant assumptions concerning accessibi-
1ity of cardinals in the mentioned papers. "

Construction.
If «, 3 are ordinals, we use the symbola « =< /3,

« »f8, %<3, & 8 4n the ordinary sense. The ordi-
nal 0 1is considered as a limit ordinal. Let @p  Dbe the
least ordinal with card caf - K; .

Put D-{oclocswf+"}. Let D, denote the
set of all limit ordinals in D which are confinal with

'o, 3 by Dy we denote the set of all limit ordinals in
D which are not confinal with &), ; finally, by D, we
denote the set of all non-limit ordinals in D . Evidently,
D=D,uD,uD, and D,, D, , D, are mutually disjoint.

If "x € D, , we choose an increasing sequence

{, Im 2 21 such that o€ is its supremum and o, =
= & +m, where X, is a limit ordinal (the x, s
need not be different for different 7. ). We emphasize that
the symbols /3, and /?,,, will be used always in this
sense.

We define a relation R on D as follows:
(1) OR2,
(2) R (xx+1) fornllac‘c-—‘f)
3)ir BeD,, « R ifandonlyif <« < B and
< eD, vD,
(4)if < e),, ¥Rx if and only if ¥ = o, for
som m » 2,
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(5) &R, + 1) if and only if either o = a) or
&eDz\{wf-r'i}-
Remarks. 1) Bvidently, o« R jA implies &« < A8 -
2) AR2 afendonlyif S =0 or f=~1.
It aceDZ\{Z,w;+1} 5 then AR if and on~
lyit <= 3+ 1.

3) 1 /sR(w§+4) and (3 & D uD , then
ﬁ - CJE .

Further, we shall always assume that f € C (D, R) - ‘

Lemma 1. oc < 3  implies f (x) =« ¢€(A3) . In par=-
ticular, f is a one-to-one mapping.

Proof. Denote by /3 the least ordinal for which the.
assertion does not hold. Choose = once for all - am ordimal o
such that <« < 3  anad f(a) 2 £ (B) .

a) Let B € D, . Then there exists an ordinal o~ €

eD v D such that «< < 2 < f8 (it suffices to
choose ¥ = Asup {c+m |m =0,1,...7).Hence, f(x)<
<f(y) and, by ¥ RAB, f(y) < f(B) -

a contradictionm.

b) let A €D, . Then « <f,, </  for some
natural m . Hence, f (<) =< (3, ). Since 3, R 3,

we have f (3, )YRFf (R and f+(B,) < £(3) -
a contradiction.
c)Let B €D, . Then B = f3'+ 1 and

£ = B < f8 . Hence, f(x)< £(A’) ° ama, by

B'RB , £(BY <« £ (fB) - a contradiction.
Lemna 2. f () 2 & for every < € D . In

particular, f (c.)f +1) = Qg + 1 and 4(@;)-“’; .

Proof. let f (x) « o . By lemma 1, we get oo~
sily % 7cx) < £%(x)
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{ M ey ? is decreasing in a comtradiction with the well
. ordering of D . -F(w; ) = @y follows from the fact
that 4 1is a one-to-one mapping.

lLemma 3. If o« e D, (< eD, andac+mf+1.

resp.), then f(x)e D, ( f(x) e D, and
£ () # a); +1 ).

Proof. The assertion is evident for o« = 4 + 1. 12
x €Dy, @+ +1, we have « R(cy +1). Hence,
“(“’R(“’;‘*'f). It f(x) ¢ Dy~ {<% + 17, then,
by 3) in the remark, f () = w; . It is impossib~
le, as f is one-to-one and ffcd;)-uf .

lema 4. If <« + m € D, m natural, then
flax +m Y= f(x) + n.

Proof, Let ot «~ 0 . Then OR2, 1R2 and f (0)Rf(2),
tCOYRF(2) . f(2) # cop+1, a8 f is one-to-one. If
£(2)% 2, by leoma 3 and 2) in the remark, we get f(0) =
-f:(d).lh’nol,, £(2)= 2 . As 1RO does not hold,
we get f(0) =0, f(1)=1.

Let m > 2 . Then there is only one 3 € D, seuch
that m R}f , namely, 3 = m + 1. By induction, we get
easily f(m ) = m , Thue, the assertion polds for o =
= 0, and, moreover, we see that it holds for any finite o .

Bvidently, the aasertion holds for o« = a)f » c.); + 1.

Let o« De an infinite ordinsl, o« G)f » c.); + 1.
1t suffices to prove that £ (X + 1) = £ (ax ) + 1 ., Obvi-
ously, £ (x)Rf (X + 1) and f(x +1) e Dy . A ¢
is one-to-ong f{(x + 1) 4% 0,2 , Hence, by 2) in the re-
mark, f (x + 1) = Lilew g1

Lemma §. o« € D, v D, inplies f(x)eD v D,.
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Proof, Evident for o« = 0 . If o« > 0, there
are infinitely meny ordinals 7 such that ¢ R o« and,
since f 1is one-to-one, infinitely many o~ such that
SRE(x) , as f(&7#6’f+1, f(x) must be-
long to D, uvD, -

Lemma 6. If < € D, , then f = f(x)& D, . Nore-
over, f (x,) = B, -

Proof, Since o, Ra , f(ex, Y= (F(xX )+ mIRAB .
¥ S eD,, then f(x,) €D, ud, , which is a
contradiction. B ¢ D, by lemma 5. Hence, 43 e D,
and f(x, ) = fq for some natural A , i.e.
f(,)+m s&-ﬁlz - A8 f(x,), ,47,‘ €D ud, 5
weget = m .

Theorem 1. (D, R) 1is rigid.

Proof. Let o« ' €D, £(xc”) % x’ . By lewm 2,
f(x?)> x? , Bylemmal, f™(xx?) <« £**T¢x1)
for all matural m . Put «™ = £ T (xT) pop max2,
« = sup{a™lm =0,1,2,.. }. Evidently, « € D, .

Let f(x )= B > x . Then « < A, < f3 for

some matural m . Moreover, there is a natural < such that
Ly < «® < o . Hence, B = Flat, )< flx®)m < o,
a contradiction. We get € (x) = a .

By lemme 6, (k) = o, . A8 x' <« x, <
<K, < o for sowe natural m=m ., Henee,qf,l-'l-'(c’)<¢c_‘<cc,
and, by induetion, «® < [ Py for all naturel t . Pi-
nally, « = Mfcﬁift ®€p € &« - a contradiction.

Theorem 2. For any set X , thene exists a rigid rela-
tion R on X . Moreover, we may choose R c R’ , wherd
R’ 18 a well ordering of X .
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Proof. Bvery strioct ordering of a finite set is rigia.
Let X ve infinite, card X = Ky - Construct (D,R)
for @y . (D, R) isrigid and R is a subset of the
relation of well ordering. As caxd D = card X , there
18 a one-to-one mapping of D onto X . This mapping en-
ables us to define a rigid relation on X with the required
property.

Consequeénces.

I. Every semigroup S" with a unity element is iso-
morphic with C (X, R) for a set X and a relation
ReXxX. 1t S' is rinite, X may be chosen finite
or of any infinite cardinal. If S? 1is infinite, card A
may be arbitrary cardinal greater or equal to caxd st .

The proof follows from [4]), as & (w ) holds for
any cardinal. The assertions concerning cardinals can be ob-
tained easily considering the constructions in [4] and theorem
2. ‘

II. The last assertions hold, if we consider only symmet-
ric relations. .

If follows from I. and [3].

I1I. It X is an infinite set, then there exists a ri-
gid symmetric relation on X .

The proof follows from theorem 2 and [3].

IV. Denote by R the category of all couples (X, R),
X tsasetanda R ¢ X = X and their compatible map-
pings.

R, is universal (i.e. every small category is iso-
morphic with a full subcategory of R ), Similarly, the
_ - categories defined in [1],(5],(6]. We had to assume in the
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quoted papers that we work in a set theary without inaccessible

cardinals. Now, we may omit this assumption.
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