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LINEAR BOUNDED OPERATORS
(Preliminary communication)
J. KOLOMf, Praha

The method of successive approximations has been develo-
ped in recent years by many mathematicians (for instance see
[1] - [6)). But in practical computations it is often shown
that the method of successive approximations converges very
slowly. Hence it is important to accelerate this method. Far
such accelerating methods see for example [7] -[9] .

In the present nste we introduce a simple new method
of solving the equation
(1) * Ax = £,
where A 1is a linear bounded operator in real or complex
Hilvert space H, f € H . The method is based on the
following theorenm.

Theorem. Let A be a linear bounded operator in H
such that A™" exists and is bounded in H . Further-more
let the inequality 0 < ¥ < 1/ AllZ  be fulfilled.
Then the sequence {xn} defined by equalities:

Xpaqg = BAXE+ B, (I-DA*A) X, ,
(2)
~ P = Re (f,Axpy Y/ 1AX, 12 (n=0,1,2..)
converges in the norm(of H) to the unique solution Xx* of
(1), Ax*=x.ll= 0(g™) , where g= II-1$A*Al<1,
A* is adjoint with A and X, + 0 1is an arbitrary
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elsment from H . Further-more b;M‘-.x*l< Ix“-.x*ﬂ

forevery m (m = 0,41,2., ). ~

We shall omit the proof of this theorem, because we in-

tend to publish it with proofs of [9] and otker theorems in

another paper.

The parameters B3, (m=0,1,2,...) are determined in

(2) from the conditions, that I x*~f3, x, I*= Min
(for m = 0,1,2,... ), It is clear that this method is

quicker than the method of successive approximations and all

80 it is simpler than the methods of the type of steepest
descent [14].
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