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”
CONCERNING & PROOF OF X, ,, & 2% wirsour gl axTon
OF CHOICE

Petr VOPENKA, Praha

We denote Z, ( S* resp.) the set theory with the
axioms of the groups A, B, C (A,B,C,D, E resp.)
see (1].

Our considerations are done in the set theory Z,. It
1s well known, that it is possible to define, in this theory,
the class L of constructible sets.

Let ¢ &« L . We denote L (e) the class construct-
ed analoguously to the construction of L = the only diffe-
rence is-that we define F'x = ¢ , where « 1is the
least ordinal number such that ("2 [xec —>

(3ﬁ)fﬁ ex&x=F'B)), 1t celL , We have obviously
L) = L . :

Restricting the relation e on L(c), we obtain a
model of the theory ", which we denote by A (c )
(see [2]).

Lemma 1. The ordinal numbers of 2., are the same as
the ordinal numbers of A (c).

Lemma 2, Every cardinal number & of 2, is a cardinal
number of A (e). _

Proof. Let there bo & 4 = 1-mapping of « onto3 & ot
in A(c), Then the same mapping is g 1 -1- mapping of .
o« onte B in Z .
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Lemma 3. Every regular cerdinal number o¢ of 2, is
a regular cerdinal number of A (e)- .

Proof. Let o¢ be confinal to B €& ~in A(le) .
Then it is confinal to A in X, .

Lemma 4. Let 4" be a cardinal number in A such
that @, 4,4 18 the first greater one (in A ). Then we
<tq 5 Z’k in X .

Proof, Obviously &0 € ¥ € @y, 4 - Hence there ex-

have X

ists a set ¢ which is a 1-1- mapping of aw, onto 7.
BEvidently ¢ & L. @y,4 18 the first cardinal greater
than @), 4n A (¢). Really, if there is a o such
that @, € O € @y, - and such that 0" 1is a cardi-
nal in  A(c), we have 7y € o and hence o 148

cardinal number in A - a contradiction. Since the axiom

of choice holds true in A (a) , we have X, 6 % 2%
"4n A(a) and hence Xy = 2 % in the theory.

Theorem. Any cardinal number &, 44 in Z, euch
that X ., % 2% is an inaccessible cardinal number
in A . ' _

Proofe Gl 44 is regular cardinal numb:r in A by
lemma 3. By lemma 4 Gy . 4 is innccessible cardinal num=-
ber in A .

Corollary 1. If the system of axioms =, + (Je)
* X
f“‘,.,, % 2 %] is consistent, the system S + "there
exists an inaccessible cardinal number" is consistent too.
Corollary 2. If the existence of an inaccessible cardinal
numpber contradicts with the axioms of the set theory, then
‘&
Xevqg = 2 is provable without using of the axiom of

choice.
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