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Commentationes Mathematicae Universitatis Carolinae
&, 1 (1965)

THE ROLE OF THE "FINITE CHARACTER PROPERTY" IN THE THEORY
OF DEPENDENCE
V. DLAB, Praha

The purpose of this little note is to show some conse-
quences of omitting the "finite character" axiom in an axio- °*
matic dependence scheme. The npte originated as a remark to
one of Prof. R. Rado’s problems mentioned in his lecture in the
Conference on General Algebra in Warsaw, September 7-11,1964.

In order to avoid references to other papers we introdu-
ce, briefly, the basic concepts (in terms of the relation
"an element depends on a set"). Let S be a set, RS its
power-set and P s S x ’ﬂ S a relation between elements
and subsets of S . A subset I £ S  is said to be p -in-
dependent if [x,IN(x)]1 ¢ p for every x e 1 ; the fa-
mily of all o -independent sets will be denoted by JP
(ﬂcyp for any @ ). A relation p 1is called the dependence
relation on S if it satisfies the following properties:

(1) xeX>[x,Xlep (incidence);
(E) [x,X]¢;0A[x,Xu(ty)J€P—>fy,XU(x Nep (exchange);
(1) [x,YlepaVy ('y.e Y- [y, Xlep)»lx,X1e p (transitivity).

Let us remark that the prcperty(T) together with (I) im-
ply the following property (M) of a relation p
(M) (x,Y]lepAaYsX—[x,X]lep (monotony) .

Denote further by (E,) and (T,) the properties (E) and
(T), respectively, restricted on X € 7,, and Y€ 17P .
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The following simple example of
S5,= (a,b,c) with g =(5xRS5)~ ([a,(&c)), (4@, le,@,4)])
establishes the logical independence of (M) omn (I), (E,) and
(T
In paper [1], we have shown that all maximal (@ -indepen=-
dent sets (i.e. maximal elements of 9", ) have the same car-
dinality (the rank of S ) if the relation o satisfies (I),
(Ex), (Ty), (M) ana
(F) [x,Xlep +3F(FsS X A F finite Alx,F] € © ) (finite
character) (i.e. © 1s a particular type of a GA -dependen—
ce relation introduced there). The main result of the present
note reads that the same conclusion does not hold for a depen-
dence relation P defined above. As a matter of fact, in this
formilation the latter statement would be trivial; far, (I), (E)
and (T) do not assure the existence of maximal elemats in
7, (this 1s a consequence of (F) ), and the following exam-
ple shows that no such elements may (in general) exist:
If S, is an infinite set and p, 1s defined by
[x,X]ep,e> x€«X or X infinite,
then P, clearly satisfies (I), (E) and (T), and 3p‘
being the family of all finite numbers of 5:. has no maximal
elements.
To svoid this ambiguity in what follows we shall consider
. @ dependence structwe (S, p) as a pair of a set S and
a dependence relation p\ with an additional property of
(B). . UP has maximal elements .
" The main result reads then as follews.
Theorem 1. Let (S, ) be a dependence structure.
(1) If a maximal P -independent set is finite, then all

are finite and have the same number of elements.
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(11) If a maximel @ -independent set is infinite, then
all are infinite.
It is evident that (1i) follows immediately from (i). Bhe
assertion (i) is thml%onseqmnce of the following twe lon;ns.
Lemma 1. Let @ be a relation on S satisfying (I),(E,),
(Ty) and (M).Let M, and M, be two maximal p -independert
sets and M; be finite. Then M,; 1is finite, too.
Proof. Suppose, on the contrary, that M, 1is not finite.
Let
My = (2, 1%y 5000y Zym s Xqs Xg geoes Y ), WheTe (24,% 1000y B ) w My A My §
evidently m 3 1. Let us choose . elements of M; \ M; ani
denote by M; the (infinite) set of all remaining elements
of My M1 .-
My= (23 Zgp0es B s Yo YeroorsYn YU My
Since Mz \ (9,) 1is no longer maximal (however, in view of
(M), it is p -independent), there is an element X, € M,
such that
Lx; 5 MpN (Y2l ¢ po;
for, otherwise
[y Mylep and Vx, (x, e My > [x;, M\ (gllep
would, in view of (T, ), ix;ply [y, MyN(y,)]ep , a con=-
tradiction. Using (E,) together with (M), we can easily ve-
rify that
My = (2,250, 2, X 1 Ygre1YmdU M, € Jp -
Now, there is another element %, € M, swh that
[x,",M“\(ryz)J¢ e ;
this follows again from the fact that M, 1is maxima)l (and hen-
ce, [y Ml ep )e Thus

My = (2qyZgyeerTuny %5 ) Xiy 10001 X5 5 Ygyeesy Y ) U M; € % -
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Proceeding in this manner we reach in m  steps the following
£ -independent set

Mam = (20,2 p0eey Zom s X4 5 Xiy 2e00s %5, V0 My=M UM, .
Hence, we get a contradiction of the maximality of M1 « The
proof of Lemma 1 is completed.

The latter proof can be readily extended to finite sets
M, and Ml and we get thus

Lempa 2. Let © be a relation on S eatisfying (I),(E.),
(T,) and (M).If M, and M, are two finite meximal @ -in-
dependent sets, then they have the same number of elements.

Proof . Since both

card (M) > card (M, ) and card (M, ) & card (M,),
Lemma 2 immediately followsa.

The following theorem shows that (ii) of Theorem 1 cannot
Be strengthened.

Theorem 2. Let (a.,v)re r  be a family of infinite cardi-
nal numbers. Then there exists a dependence structure with a
family (M7)7€ p of maximal independent sets such that

card (My) = @,  for each ye I'.
Proof. Consider-a family (sf)f‘ r of mutually
disjoint sets such that
caxd (Sy)= ckp for each ye I,

and denote by S, the union of these sets S =rt% s .
€

Define the relation @ € S, > RS, on S, in the

following way: For x € S, and XE S, ,

(x) [x,X]ep, > x € X or, for a certain ;& I,
X =(Syp\FRuAy ywnere f; € Sy is finite,

A'f;sy‘ilr Sy and W(A%)amd(F,ﬁ).
%o
It caan)e" easily seen that, besides (I) , also (T) is
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satisfied by this relation Q- ND', prove the validity of CE)

for @ . Thus, let x €S, , yeS, and X€ S, be

such that

(x x) [x,X14p, and [x,Xu(y)]ep, -

Then, x ¢ X . The conclusion [y, Xu(x)]lep, is tri-

vial for X = 44 ; suppose, therefore, that x = 4 . The

assumption {* x ) implies that

Xu(y) = (Sp\ F) o Ag with caxd (Fp)= caxd (Ap)< 4,

for a suitable 4; € " . We have to consider four (in fact,

very similar) cases:

(1) iy € Sp;, X € 505 lee. ye Sy~ Fy , x €Fy, ;then, evident-

1y, [ry,(sf;\[(Fa:u(q))\(x)J)uA,r.]ep, : '

(11)y 6 Sy, X €Sy, ,i.e0 €SN\ Fr ) X¢ S uAy ; then,
Ly, (Sg\ LR, uy)])vA, vuix)]ep, ;

(111),y¢$,.,x¢5f. ylee yeAy, x & By then,
Ly, (SN LR\ (x)])u (A N(y))] e, ;

(iv)y ¢ 5{,, X ¢ Sy, , 1oy € Ay, X ¢ Syru Ay then,
[y, (S \NFr,) U (LA N ()] (x))] € p -

Thus, (E) holds for @, -

Moreover, since, for any element X € 53’ » SN (x) 1is
not of the form described in (X)), 57- is P, ~-independent
fa each € [N . Also, Sy= (SyN gruv g is maximal
for each ¥ € ' , hence, the last condition (B8) 1s satis-
fied for P, and, thus, (S,, P, ) is a dependence structu-
re (in the sense of this note).

This completes the proof, for the existence of maximal
fo =independent sets with prescribed cardinalities has also
been established (take e.g8. My = Sp ),

Remear k. As a matter of fact, referring back to the

A
dependence structure ( 5, 7 Po ) constructed in the proof of
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Theorem 2, all sets of the form
(% x %) (Sf:\Fz)uA% with Af‘:ns‘:-y and
M(F‘) - M(A;;) < #, are maximal and o, -indepen-
dent. Evidently,
cand (CSgpn Fg) o Ag) = cardd ( Sy ) = cy
On the other hand, eny maximal P, -independent set of
this structure is of the form (x x x ). Por, any maximal set
mst necessarily be of the form (%) and any maximal g -inde-
pendent set must, moreover, satisfy the last condition on car-
dinalities in (x x x ), Thus, the cardinality of an arbitrary
maximal (@, -independent set of (S, , ©, ) 1is equal to one
of the numbers
Finally, let us remark that the maximel p, =-indepen-
dent sets of (S, , ©, ) satisfy also the conditions denoted
in [2) by (Bj,) ena (B, : |
(Bj; ) For any two maximal independent sets M; and M,
and any finite subset M, s M, ~ M, there exists
a subset M; € M, N\ M of the same number of elements
such that (M, \ M} ) v Mlz is a maximal independent
set. —
(K'N ) For any two maximal independent sets M, and M,
‘and any finite subset M, s M,N M,  there exists a subset
M, s M, N\ M;  of the same number of elements such that
M! v (M, \ M; ) is & maximal independent set.
Both properties suffice to%rovedfor single~point subsets
M) and M) (the properties (B}) ana (B)) 1in[2]); the
proof involves several simple cases to be considered and is
left to the reader. Thus, the example of the dependence struc-
ture (S5, , ©, ) in the proof of Theorem 2 shows that the
assumption of the finite character prope;ty
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(By ) If every finite subset of a set X . is & subset of a
suitable maximal independent set, then X 1s a subset of a
naximal independent set. was essential in § 5 of [2].

In order to show also the logical independence of (B,)
on the stronger properties (3'29_ ) and (3"29’) of [2), consider
the following simple example ( Sy Pg ) of a dependence
structure:

Sy=5vu S, with §n5, =4, card (5)) 2 K, , card (S))> K,

and

[x,Xlep, «> x€ X or card (X n 5,) >4, or

X=(5\F)uA, with F; finite and ecamd (F;) &
& caxd (A, ) .

It is a matterpf routine to check that o, satisfies(I),(E)
and (T) , that all maximal (©, -independent sets are of the

form
M’(s1\ﬁ)UAz with w&d(ﬁ,)-c:ud(Az)<;€.
and that they satisfy the properties (B)_) am (Eé?)

(which reduce to (B%,) and (B’y. ), respectively). All ma-
ximal @, -independent sets have thus the same éardinality

(m=caxd ( S;) ) - a fact which follows, in general, from the
[

property (8 24

filled:

) . However, it turns out that (B;) is not ful-

Let T be a cO}mtable subset of S, and Rl aq @
family of subsets of S; such that
caxd (F, ) = m forevery m > 1 -
Then, for any finite subset F; of T there is a natral
number m (the number of elements of [ ) such that
(8, NF v F,

is a maximal p‘-independant set. But, there is no maximal
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- Py —independent set containing the set T.
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