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Commentationes Mathematicae Univers i tat is Carolinae 

$ , 1 (1965) 

THE R&LE OP THE "FINITE CHARACTER PROPERTY" IN THE THEORY 

OF .DEPENDENCE 

V. DLAB, Praha 

The purpose of t h i s l i t t l e note i s to show some conse­

quences of omitting the "finite character" axiom in an ax io - ' 

matic dependence scheme. The note originated as a remark to 

one of Prof. R. Rado's problems mentioned in h i s lecture in the 

Conference on General Algebra in Warsaw, September 7-11,1964. 

In order to avoid references to other papers we introdu­

ce, br ie f ly , the basic concepts ( in terms of the re la t ion 

"an element depends on a s e t " ) . Let 5 be a s e t , "flS I t s 

power-set and p & S x # 5 a re lat ion between elements 

and subsets of S . A subset I £ 5 i s said to be p - i n ­

dependent i f Cxt I\ (x)) 4 p for every x e 1 ; the f a ­

mily of a l l p -independent se t s w i l l be denoted by Cfp 

( 0 e Cfp for any p ) • A re lat ion p i s ca l led the dependence 

re lat ion on S i f i t s a t i s f i e s the following properties: 

(I) xeX-*tx, X) € p ( incidence); 

(E) f x , X ] 4 p /\tx, X u (<%)]€ p-+ty f Xu(x )] e p (exchange); 

(T) lx,Y]ep A V<y (<y€V->Ly, X]ep)-»Lx,Xle p ( t r a n s i t i v i t y ) . 

Let us remark that the prcperty(T) together with (I) im­

p ly the following property (M) of a re lat ion p 

(M) £x , Ylep A y s X -+ Lx, X J ep (monotony). 

Denote further by CE* ) and (TA) the properties (£ ) and 

(T)^ respect ive ly , re s tr i c ted on X € X, and Y€ Jp . 
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The following simple example of 

S^(cL,ir,c) with fi»(Si*#S1)\(fa,(*,c)]i[Jrf(a,c)hCc,(<it+)J> 

es tabl i shes the log ica l independence of CM) on £X), (EM) and 

( T . ) . 

In paper f l ] , we have shown that a l l maximal p - indepen­

dent se t s ( i . e . maximal elements of %> ) have t n e same car­

d ina l i ty (the rank of S ) i f the re la t ion p s a t i s f i e s (1), 

C E A ) , ( V , CM) and 

(P) C*,Xj€p -+3F ( FsX A F f i n i t e ALX,FJ € p ) ( f in i t e 

character) ( i . e . j© i s a particular type of a <xA -dependen­

ce re la t ion introduced there)• The main resul t of the present 

note reads that the same conclusion does not hold for a depen­

dence re la t ion p defined above. As a matter of f a c t , in t h i s 

formulation the l a t t e r statement would be t r i v i a l ; for , (D, (E) 

and (T) do not assure the existence of maximal elemerts in 

X ( t h i s i s a consequence of (F) ) , and the following exam­

ple shows that no such elements may (In general) e x i s t : 

I f Sz i s an Inf in i te set and px i s defined by 

Lx,Xl*p2 «-+ xm X or X i n f i n i t e , 

then pt c lear ly s a t i s f i e s (l),(E) and (T), and 2fp 

being the family of a l l f i n i t e numbers of St has no maximal 

elements* 

To avoid t h i s ambiguity in what follows we sha l l consider 

a dependence structure (S,p) as a pair of a set 5 and 

a dependence re la t ion p with an additional property of 

(B) X, has maximal •lt»#nt« • 

The main resu l t reads then as fo l l ews . 

Theorem 1 . Let (5 1 p ) be a dependence structure . 

( i ) I f a maximal p -Independent set i s f i n i t e , then a l l 

are f i n i t e and have the same number of elements. 
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(11) If a maximal p -Independent sat i s infinite, than 

all are infinite. 

It i s evident that ( l i ) follows immediately from ( i ) . Tthe 

assertion (i) i s thenrcbnseqiBnce of the following two lemma8. 

^pmA ;u Let p be a relation on S satisfying CI), (£tih 

(T*) and CM). Let M,, and M2 be two maximal p -independeit 

sets and Mi be f in i te . Then M2 is f ini te , too. 

Proof. Suppose, on the contrary, that M̂  is not f in i te . 

Let 
Mi~(z1,z2,...,z„,xvxl,...,x^),whert (zt,%2,...,z^)mM%f\Ml\ 

evidently m & 1. Let us choose *i elements of M 2 \ M*j and 

denote by M 2 the (infinite) set of all remaining elements 

of M 2 \ M, -

Since M 2 \ C ^ ) is no longer maximal (however, In view of 

CM) f it is p -independent), there is an element **{ € Mi 

such that 

t% > M, \ (%))4 f>; 

for, otherwise 

tyt, M1 ] € f> and Vx± (xi € M2 - • .Cx*, M2 \ (% )J € p 

would, in view of (TK) f imply ly^, Ml\(<y1>] €p , a con­

tradiction* Using C£A) together with (M), we can easily ve­

rify that 
M n * f V V - * * - m t % i * j i — » * * > u M i « °5D ' 

How, there i s another element -^ c M̂  sush that 

this follows again from the fact that M1 i s maximal (and hen­

ce, tyttfy J € p ) # Thus 

M 2 » C * ^ , . . . ^ , ^ , * ^ , ^ . 
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Proceeding in t h i s manner we reach in <m steps the following 

p -independent set 

Hence, we get a contradiction of the maximality of M1 - The 

proof of Lemma 1 i s completed. 

The l a t t e r proof can be read i ly extended to f i n i t e s e t s 

M,j and M. and we get thus 

fre^ma, 2- Let p be a re lat ion on S sat i s fy ing CI); C£*,)9 

(T^) and CM). If M,, and M% are two f i n i t e maximal /©- in­

dependent s e t s , then they have the same number of elements. 

P r o o f . Since both 

tand ( M i ) > caucd CMZ) and Cjoucd CM^ ) .4 csvcd CM2) , 

Lemma 2 immediately fo l lows . 

The following theorem shows that ( i i ) of Theorem 1 cannot 

be strengthened . 

Theorem 2 . Let Catf]L6 p be a family of in f in i t e card i ­

nal numbers. Then there ex i s t s a dependence structure with a 

family ( ^ r V c P °* m a x i m a * independent se t s such that 

tcutd CMr) - ctr for each y € P -

P r o o f . Consider a family ( S ^ ) of mutually 

d i s jo int se ts such that 

(KVLCL (S^)* 0*^ for each y e P , 

and denote by 50 the union of these s e t s Sa = U S 

Define the re lat ion p0 £ S
D ^ P 5o on S 0 in the 

following way: For x £ 5 0 and X S S0 , 

( * ) C*> * 3 e p 0 «-* x £ X or, for a certain f0 € P , 

X * C5n^Ff9)uA|5 ,where Ff9 £ S y0 ±a f i n i t e , 
A%ST^r ST and ea*d CA^) * cwcdCF^) . 

Ttfo 
It can be e a s i l y seen that , besides CI) 9 a l so CT) ±a 



sa t i s f i ed by t h i s re lat ion po . Now, prove the v a l i d i t y of (B) 

for po . Thus, l e t x € S 0 , /y e S 0 and X £ S9 be 

such that 

(* * ) £ x , Xlip0 and Cx,X u f>y> J € j0o . 

Then, x 4 X . The conclusion C^y, X u Cx) J e pc ±Q t r i ­

v ia l for x ** ty. '7 suppose, therefore, that x + y, • The 

aasumption (* x ) imp l ies that 

X u C<y ) » C Sfo \ F$ ) u Afe with c<vcc- C F^ ) = c^td C A^) < &0 

for a suitab le ^ c P . We have to consider four (in f a c t , 

very similar) casess 

(i) ij e Sfo 7 x e Sf0 , i . e . y e S^ F% , x e Ffm . then, evident­

ly, ly1CSi0\Z(FfouCy))\Cx)])uAr9] € Po ; 

( i i ) * M S f e , x e$ro , i . e . / y * 5 ^ \ F^ , x4 Sfou An ; then, 

L < y iCS 6 \ L f^ur -y)J ) u * ^ u C x ) j € / 0 o ; 

( i i i ) y 4 S ^ , X 4 Sfo , i . e . /y € Ajj , x €• fy„ . then, 

C ^ i f S ^ \ . C F r # \ <x)J) u C/%. \ t y ) ) J € po . 

( iv) /y ^ S / p , * £ S& , i . e . /y 6 A ^ ; x £ 5 ^ u A ^ ; then, 

CV» C S f # \ F n ) u f C A 6 \ C i y ) J \ Cx))J e / > 0 . 

Thus, CE) holds for /D«, . 

Moreover, s ince , for any element x € S** } S~*V (x ) i s 

not of the form described in ( # ) , 5*r i s p0 -independent 

for each f c P . Also, S y « ( S ^ \ 0 ) u 0 i s maximal 

for each y € P ; hence, the la s t cond ition CB) js s a t i s ­

fied for p0 and, thus, CS0 ; pc ) i s a dependence structu­

re ( in the sense of t h i s note) . 

This completes the proof, for the existence of maximal 

p0 -independent se t s with prescribed cardinal i t i es has also 

been established (take e .g . ^V =- Sy ) # 

R e m a r k . As a matter of f a c t , referring back t o the 
re ^ 

dependence structure C o0 7 p0 ) constructed in the proof of 
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Theorem 2, a l l seta of the form 

( * * * ) f 6 ^ s F . g ) u A.^ ygxxh *%*$>f0
m 0 «n<* 

caaaUf^) - oa*d(Afi) < ## a ^ maximal and ;o0 -indepen­

dent* Evidently, 
ou<£ CC Sgj s Fjg ) u A^) - ca/u* r S.£) * <*£ 

On the other hand, any maximal pe -Independent set of 

this structure is of the form (* * * )• For, any maximal set 

must necessarily be of the form (* ) and any maximal p0 - inde­

pendent set must, moreover, satisfy the las t condition on car­

dinal i t ies in (* * * )• Thus| the cardinality of an arbitrary 

maximal f± -independent set of (Sc , pc ) is equal to one 

of the numbers 

Finally, let us remark that the maximal p0 -indepen­

dent sets of ( S0 - pe ) satisfy also the conditions denoted 

in f 2J by (%'u) and (%u > -

( &21 ) For any two maximal independent sets M1 and M2 

and any f in i te subset H, s M1 x M^ there exists 

a subset M^ s M̂  x M̂  of the same number of elements 

such that (M1 \ M^ ) u M'z i s a maximal independent 

se t . 

(&2^ ) For any two maximal independent sets M, and M2 

and any f in i te subset M̂  fi M ^ M^ there exists a subset 

M^ S M \ M1 of the same number of elements such that 

M' u CM* \ M| ) i s a maximal independent se t . 

Botn properties suffice toTprovedfor single-point subsets 

M{ and Mj (the properties ( fy ) and ( B£ ; in f 2 j ) ; the 

proof involves several simple cases to be considered and i s 

left to the reader. Thus, the example of the dependence s t ruc­

ture C S0 | pe ) in the proof of Theorem 2 shows that the 

assumption of the f in i te character property 
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( B^ ) if every finite subset of a set X . is a subset of a 

suitable maximal independent set, then X is a subset of a 

maximal independent set. was essential in § 5 of [23• 

Jai order to show also the logical independence of ( B$ ) 

on the stronger properties (B^. ) andCB^ ) of ^2^» consider 

the following simple example ( S# f p# ) of a dependence 

structure: 

S, » S1 u S2 with 5^nS 1«0 9 6M4(V»/C #,eM4f^>»*,-

and 

[*, XJcjc^ «—* x c X or ea^wi C X n S 2 ) * ft; o r 

K*(S^\^)u Az with E, f i n i t e and toxd (Fn) 4 
4 cox<aUA2 ) . 

It i s a matterjbf routine to check that p^ s a t i s f i e s (I ) , CE ) 

and ( T ) j that a l l maximal px -independent se t s are of the 

form 

M = » C S 1 \ r ^ ) u A i L with caxd ( rT., ) «• catd (&2 ) < tfm 

and that they sa t i s fy the properties (&% - ) and (^OQ^ 

(which reduce to (^'x4 ) a n d ^ ̂  2f ^ * respect ive ly ) . All ma­

ximal jp* -independent s e t s have thus the same card inal i ty 

( - Cwtd ( S i ) ) - a fact which fo l lows, in general, from the 

property ^ B 2 ) , However, i t turns out that ('&$) i s not f u l ­

f i l l e d : 

.Let T be a countable subset of S9 and (£ ) ^ a 

family of subsets of S1 such that \ 

c*a**i f f ^ ) « n for every f t * 1 • 

Then, for any f i n i t e subset F2 of T there i s a nattral 

number /n (the number of elements of (^ ) such that 

i s a maximal jD^-independent set* But, there i s no maximal 
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p# -independent se t containing the se t T * 
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