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STRONG MAXIMUM PRINCIPLE FOR WEAKLY NONLINEAR PARABOLIC
EQUATIONS

J. KADLEC and R. V{BORNt , Praha
Preliminary communication.

Let 0 be a region in E, ,, . Let us assume the funct-
ions ay; (%x,t) are defined, bounded and measurable on ~
(X stands for (Xq,.eey Xy ), T is the "time" variable).

n
Let us assume that the quadratic form i’a,zﬁ @y x,t) f;- f)’

is positive definite, i.e., there is a positive constant 9
such that the inequality

}; 5 ot i ng;
:J'

holds slmost everywhere on 0" and for all real vectors

(¢, €,,000 §m ). Let 4 be a weak solution of the equation

u ¥ 3 (x,t)-—a—-u(x t)eflu, u, )= 0
ot ,;f,:,a&“* ax;

such that 4« belongs to W“’i’(a) for every compact
@ = 0 . Let us suppose turther that the function f(w, “‘i)
is measurable and that the 1nequal:lty ‘
3«— 2,1
1'-(44.,44,, ) M(Z ( ) )

is satisfied, vhere M 1is a constant. We impose the following -
continuity hypothesis on the function 4 : For any regioa
AL c £, and eny numbers a, £ (a <& ) such that
Lx<a,&>c 0 the limit formla

lm flu.(at,t)—u(x,t NEdx = 0

tat

-19 =



is satisfied for all ¢, € (a, &) .

We say that the point (:;n, tm ) can be connected with
the point (X, , ,) by un admissible polygonal psth, if the-
;'e exists a finite sequence of points (x; , t; ) (1=
> 0,1,2,...,m ) such that 1) %, <... <  <ZTi<...<E
2) the line segment connecting the points (u;  , 3., )
and (x;, t; ) lies in (. Lat us denote by S (X,, ¥, ) the
set of all points which can be connected with (x,, t,) by an
admissible polygonsl path.

The function A is said to have a maximum (in S(X,, t,) )
near the point (X,,t,) e J , provided thet for any n -dimen-
sional ball K and every o > 0 such thet (X,,t,) e Q =
=Kx<{t,~d;t, ) c " the inequality

wlx,t) 2 Asupess 4 (x,t)
xyt)e @, (%, )€ S(%,,%)

holds.

The aim of this paper is to announce the two following sta-
tements.

1) The functiox’:. z is bounded from above on every compact
subset of 0. '

2) If 4 hes a maximum (% near the point (X0, t,)e O,

then & (x,t) = ® almost everywhere in S (X, , £, -
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